等式中找規(guī)律
孫海洋是個愛動腦筋的八年級學(xué)生,他特別喜歡數(shù)學(xué),一有空就看數(shù)學(xué)課外書,并琢磨書上的問題.有一次,他從一本書中看到了下面一個有趣的問題:
仔細(xì)觀察下面4個等式:
32=2+22+3
42=3+32+4
52=4+42+5
62=5+52+6
……
請寫出第5個等式,由此能發(fā)現(xiàn)什么規(guī)律?用公式將發(fā)現(xiàn)的規(guī)律表示出來.
對這個問題,孫海洋感到很新奇,他認(rèn)真分析題目給出的4個等式,發(fā)現(xiàn)有以下一些結(jié)構(gòu)特征:
(1)每個等式的左邊都是一個自然數(shù)的平方,等式的右邊都是3個數(shù)的和.
(2)4個等式的左邊依次是32、42、52、62,它們的底數(shù)3、4、5、6是4個連續(xù)的自然數(shù),其大小均比所處等式的序號多2.
(3)每個等式右邊的3個加數(shù)也有明顯的規(guī)律.
第1個加數(shù)和第3個加數(shù)是兩個連續(xù)的自然數(shù),并且第3個加數(shù)等于該等式左邊平方數(shù)的底數(shù),第2個加數(shù)也是一個平方數(shù),底數(shù)等于第1個加數(shù).
根據(jù)以上規(guī)律,孫海洋猜想第5個等式應(yīng)該是72=6+62+7.
孫海洋進一步歸納了這5個等式的規(guī)律,用公式表示為(n+1)2=n+n2+(n+1)…①其中n=2,3,…
如果將①式右邊變形、左邊不變,那么可得(n+1)2=n2+2n+1…②
等式②多么眼熟!它不就是完全平方公式的一個具體應(yīng)用嗎?由此可見,孫海洋同學(xué)歸納的規(guī)律是正確的.
想一想,當(dāng)n=0,1時,等式①是否成立?當(dāng)n為負(fù)整數(shù)時,等式①是否成立?