直角坐標(biāo)系中,以點(diǎn)A(1,0)為圓心畫(huà)圓,點(diǎn)M(4,4)在⊙A上,直線(xiàn)y=-x+b過(guò)點(diǎn)M,分別交x軸、y軸于B、C兩點(diǎn).

1.求⊙A的半徑和b的值;

2.判斷直線(xiàn)BC與⊙A的位置關(guān)系,并說(shuō)明理由

3.若點(diǎn)P在⊙A上,點(diǎn)Q是y軸上C點(diǎn)下方的一點(diǎn),當(dāng)△PQM為等腰直角三角形時(shí),請(qǐng)直接寫(xiě)出滿(mǎn)足條件的點(diǎn)Q坐標(biāo)

 

 

1.5,  7

2.相切

3.①當(dāng)∠PQM=90°時(shí),Q(0,0);

②當(dāng)∠PMQ=90°,Q (0,2);

③當(dāng)∠QPM=90°時(shí),Q(0,)或(0,-8)

解析:略

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

15、在平面直角坐標(biāo)系中,以點(diǎn)P(4,-3)為圓心的圓與x軸相切,那么該圓和y軸的位置關(guān)系是
相離

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

13、在平面直角坐標(biāo)系中,以點(diǎn)(2,3)為圓心,2為半徑的圓與x軸的位置關(guān)系是
相離

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知:如圖,在直角坐標(biāo)系中,以點(diǎn)M(1,0)為圓心、直徑AC為2
2
的圓與y軸交于A、D兩點(diǎn).
(1)求點(diǎn)A的坐標(biāo);
(2)設(shè)過(guò)點(diǎn)A的直線(xiàn)y=x+b與x軸交于點(diǎn)B.探究:直線(xiàn)AB是否⊙M的切線(xiàn)并對(duì)你的結(jié)論加以證明;
(3)在(2)的前提下,連接BC,記△ABC的外接圓面積為S1、⊙M面積為S2,若
S1
S2
=
h
4
,拋物線(xiàn)y=ax2+bx+c精英家教網(wǎng)經(jīng)過(guò)B、M兩點(diǎn),且它的頂點(diǎn)到x軸的距離為h.求這條拋物線(xiàn)的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在平面直角坐標(biāo)系中,以點(diǎn)M(2,0)為圓心的⊙M與y軸相切于原點(diǎn)O,過(guò)點(diǎn)B(-2,0)作⊙M的切線(xiàn),切點(diǎn)為C,拋物線(xiàn)y=-
3
3
x2+bx+c
經(jīng)過(guò)點(diǎn)B和點(diǎn)M.
(1)求這條拋物線(xiàn)解析式;
(2)求點(diǎn)C的坐標(biāo),并判斷點(diǎn)C是否在(1)中拋物線(xiàn)上;
(3)動(dòng)點(diǎn)P從原點(diǎn)O出發(fā),沿y軸負(fù)半軸以每秒1個(gè)單位長(zhǎng)的速度向下運(yùn)動(dòng),當(dāng)運(yùn)動(dòng)t秒時(shí)到達(dá)點(diǎn)Q處.此時(shí)△BOQ與△MCB全等,求t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•大慶)如圖,平面直角坐標(biāo)系中,以點(diǎn)C(2,
3
)為圓心,以2為半徑的圓與x軸交于A,B兩點(diǎn).
(1)求A,B兩點(diǎn)的坐標(biāo);
(2)若二次函數(shù)y=x2+bx+c的圖象經(jīng)過(guò)點(diǎn)A,B,試確定此二次函數(shù)的解析式.

查看答案和解析>>

同步練習(xí)冊(cè)答案