(本小題滿分9分)

如圖,在直角坐標系中,點A的坐標為(-2,0),連結(jié)OA,將線段OA繞原點O順時針旋轉(zhuǎn)120°,得到線段OB.

(1)求經(jīng)過A、O、B三點的拋物線的解析式;

(2)在(2)中拋物線的對稱軸上是否存在點C,使△BOC的周長最?若存在,求出點C的坐標;若不存在,請說明理由.

(3)如果點P是(2)中的拋物線上的動點,且在x軸的下方,那么△PAB是否有最大面積?若有,求出此時P點的坐標及△PAB的最大面積;若沒有,請說明理由.

 

 

 

解:(1)B(1,)………………………………………………….1分

設(shè)拋物線的解析式為y=ax(x+a),代入點B(1, ),得,

因此…………………………………………………3分

(2)如圖,拋物線的對稱軸是直線x=—1,當點C位于對稱軸與線段AB的交點時,△BOC的周長最小…………………………………………………4分

設(shè)直線AB為y=kx+b.所以

因此直線AB為,………………5分

當x=-1時,

因此點C的坐標為(-1,). …………………6分

(3)如圖,過P作y軸的平行線交AB于D.

       

 …………………7分

當x=-時,△PAB的面積的最大值為       ……..9分

 

解析:略

 

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

(本小題滿分7分)

如圖,已知拋物線y1=-x2+bx+c經(jīng)過A(1,0),B(0,-2)兩點,頂點為D.

1.(1)求拋物線y1 的解析式;

2.(2)將△AOB繞點A逆時針旋轉(zhuǎn)90°后,得到△AO′ B′ ,將拋物線y1沿對稱軸平移后經(jīng)過點B′ ,寫出平移后所得的拋物線y2 的解析式;

3.(3)設(shè)(2)的拋物線y2軸的交點為B1,頂點為D1,若點M在拋物線y2上,且滿足△MBB1的面積是△MDD1面積的2倍,求點M的坐標.

 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(本小題滿分6分)

如圖,在8×11的方格紙中,每個小正方形的邊長均為1,△ABC的頂點均在小正方形的頂點處.

1.(1)畫出△ABC繞點A順時針方向旋轉(zhuǎn)90°得到的△;

2.(2)求點B運動到點B′所經(jīng)過的路徑的長.    

 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(本小題滿分14分)

如圖1,拋物線y軸交于點A,E(0,b)為y軸上一動點,過點E的直線與拋物線交于點B、C.

 

 

 

 

 

 

 


1.(1)求點A的坐標;

2.(2)當b=0時(如圖2),求的面積。

3.(3)當時,的面積大小關(guān)系如何?為什么?

4.(4)是否存在這樣的b,使得是以BC為斜邊的直角三角形,若存在,求出b;若不存在,說明理由.

 

查看答案和解析>>

科目:初中數(shù)學 來源:2010-2011年江蘇省常州實驗初級中學九年級第二學期模擬考試數(shù)學卷 題型:解答題

(本小題滿分8分)如圖所示的矩形包書紙中,虛線是折痕,陰影是裁剪掉的部分,四個角均為大小相同的正方形,正方形的邊長為折疊進去的寬度.

【小題1】(1)設(shè)課本的長為a cm,寬為b cm,厚為c cm,如果按如圖所示的包書方式,將封面和封底 各折進去3cm,用含a,bc的代數(shù)式,分別表示滿足要求的矩形包書紙的長與寬;
【小題2】(2)現(xiàn)有一本長為19cm,寬為16cm,厚為6cm的字典,你能用一張長為43cm,寬為26cm的矩形紙包好這本字典,并使折疊進去的寬度不小于3cm嗎?請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2011-2012學年河北省石家莊市42中學九年級第一次模擬考試數(shù)學卷 題型:解答題

(本小題滿分9分)
如圖,兩根鐵棒直立于桶底水平的木桶中,在桶中加入水后,一根露出水面的長度是它的,另一根露出水面的長度是它的.兩根鐵棒長度之和為55 cm.
(1)根據(jù)題意,甲、乙兩個同學分別列出了尚不完整的方程(組)如下:
甲:                乙:   =55
根據(jù)甲、乙兩名同學所列的方程(組),請你分別指出未知數(shù)xy表示的意義,然后在橫線上補全甲、乙兩名同學所列的方程(組):
甲:x表示                   ,y表示                   ;
乙:x表示                     ;
(2)求此時木桶中水的深度多少cm?(寫出完整的解答過程)

查看答案和解析>>

同步練習冊答案