已知:如圖,在△ABC中,∠C=90°,∠B=30°,AD是∠BAC的平分線,且AB=,求:AD的長及S△ADB

【答案】分析:根據(jù)30°角所對直角邊等于斜邊一半可求出AC,在RT△ACD中可求出AD,根據(jù)BD=AD求出BD后可得出S△ADB
解答:解:∵∠C=90°,∠B=30°,

∴∠BAC=60°,
∵AB=
∴AC=AB=×=,
∵AD平分∠BAC,
∴∠1=∠2=30°,
∴∠1=∠B,
在Rt△ACD中,cos∠2=
∴AD=;
∵∠1=∠B,
∴BD=AD=4,
,
∴AD的長為4,△ABD的面積為
點評:此題考查了解直角三角形的知識,解答本題需要掌握30°角所對直角邊等于斜邊一半,難度一般.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

34、已知:如圖,在AB、AC上各取一點,E、D,使AE=AD,連接BD,CE,BD與CE交于O,連接AO,∠1=∠2,
求證:∠B=∠C.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•啟東市一模)已知,如圖,在Rt△ABC中,∠C=90°,∠BAC的角平分線AD交BC邊于D.
(1)以AB邊上一點O為圓心,過A,D兩點作⊙O(不寫作法,保留作圖痕跡),再判斷直線BC與⊙O的位置關系,并說明理由;
(2)若(1)中的⊙O與AB邊的另一個交點為E,半徑為2,AB=6,求線段AD、AE與劣弧DE所圍成的圖形面積.(結果保留根號和π)《根據(jù)2011江蘇揚州市中考試題改編》

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知:如圖,在△ABC中,∠C=120°,邊AC的垂直平分線DE與AC、AB分別交于點D和點E.
(1)作出邊AC的垂直平分線DE;
(2)當AE=BC時,求∠A的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

已知:如圖,在AB、AC上各取一點E、D,使AE=AD,連接BD,CE,BD與CE交于O,連接AO,∠1=∠2,
求證:∠B=∠C.

查看答案和解析>>

科目:初中數(shù)學 來源:專項題 題型:證明題

已知:如圖,在AB、AC上各取一點,E、D,使AE=AD,連結BD,CE,BD與CE交于O,連結AO,
           ∠1=∠2;
求證:∠B=∠C

查看答案和解析>>

同步練習冊答案