如圖,在平面直角坐標(biāo)系中,過格點A,B,C作一圓弧,點B與下列格點的連線中,能夠與該圓弧相切的是( )

A.點(0,3)
B.點(2,3)
C.點(5,1)
D.點(6,1)
【答案】分析:根據(jù)垂徑定理的性質(zhì)得出圓心所在位置,再根據(jù)切線的性質(zhì)得出,∠OBD+∠EBF=90°時F點的位置即可.
解答:解:連接AC,作AC的垂直平分線BH,交格點于點O,則點O就是所在圓的圓心,
∵過格點A,B,C作一圓弧,
∴三點組成的圓的圓心為:O(2,0),
∵只有∠OBD+∠EBF=90°時,BF與圓相切,
∴當(dāng)△BOD≌△FBE時,
∴EF=BD=2,
F點的坐標(biāo)為:(5,1),
∴點B與下列格點的連線中,能夠與該圓弧相切的是:(5,1).
故選:C.
點評:此題主要考查了切線的性質(zhì)以及垂徑定理和坐標(biāo)與圖形的性質(zhì),得出△BOD≌△FBE時,EF=BD=2,即得出F點的坐標(biāo)是解決問題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在平面直角坐標(biāo)中,四邊形OABC是等腰梯形,CB∥OA,OA=7,AB=4,∠COA=60°,點P為x軸上的一個動點,但是點P不與點0、點A重合.連接CP,D點是線段AB上一點,連接PD.
(1)求點B的坐標(biāo);
(2)當(dāng)∠CPD=∠OAB,且
BD
AB
=
5
8
,求這時點P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•渝北區(qū)一模)如圖,在平面直角坐標(biāo)xoy中,以坐標(biāo)原點O為圓心,3為半徑畫圓,從此圓內(nèi)(包括邊界)的所有整數(shù)點(橫、縱坐標(biāo)均為整數(shù))中任意選取一個點,其橫、縱坐標(biāo)之和為0的概率是
5
29
5
29

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)中,等腰梯形ABCD的下底在x軸上,且B點坐標(biāo)為(4,0),D點坐標(biāo)為(0,3),則AC長為
5
5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)xOy中,已知點A(-5,0),P是反比例函數(shù)y=
k
x
圖象上一點,PA=OA,S△PAO=10,則反比例函數(shù)y=
k
x
的解析式為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)中,四邊形OABC是等腰梯形,CB∥OA,OC=AB=4,BC=6,∠COA=45°,動點P從點O出發(fā),在梯形OABC的邊上運動,路徑為O→A→B→C,到達(dá)點C時停止.作直線CP.
(1)求梯形OABC的面積;
(2)當(dāng)直線CP把梯形OABC的面積分成相等的兩部分時,求直線CP的解析式;
(3)當(dāng)△OCP是等腰三角形時,請寫出點P的坐標(biāo)(不要求過程,只需寫出結(jié)果).

查看答案和解析>>

同步練習(xí)冊答案