【題目】如圖是云梯升降車示意圖,其點(diǎn)A位置固定,AC可伸縮且可繞點(diǎn)A轉(zhuǎn)動,已知點(diǎn)A距離地面BD的高度AH為3.4米.當(dāng)AC長度為9米,張角∠HAC為119°時,求云梯升降車最高點(diǎn)C距離地面的高度.(結(jié)果保留一位小數(shù))參考數(shù)據(jù):sin29°≈0.49,cos29°≈0.88,tan29°≈0.55
【答案】云梯升降車最高點(diǎn)C距離地面的高度為7.8m.
【解析】
作CE⊥BD于E,AF⊥CE于F,如圖,易得四邊形AHEF為矩形,則EF=AH=3.4m,∠HAF=90°,再計算出∠CAF=29°,則在Rt△ACF中利用正弦可計算出CF,然后計算CF+EF即可.
作CE⊥BD于E,AF⊥CE于F,如圖,
易得四邊形AHEF為矩形,
∴EF=AH=3.4m,∠HAF=90°,
∴∠CAF=∠CAH-∠HAF=119°-90°=29°,
在Rt△ACF中,∵sin∠CAF=,
∴CF=9sin29°=9×0.49=4.41,
∴CE=CF+EF=4.41+3.4≈7.8(m),
答:云梯升降車最高點(diǎn)C距離地面的高度為7.8m.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知是非零實數(shù),,在同一平面直角坐標(biāo)系中,二次函數(shù)與一次函數(shù)的大致圖象不可能是( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在每個小正方形的邊長為1的網(wǎng)格中,點(diǎn)A,B,C均在格點(diǎn)上。
(I)AB的長度等于
(II)請你在圖中找到一個點(diǎn)P,使得AB是∠PAC的角平分線請在如圖所示的網(wǎng)格中,用無刻度的直尺,畫出點(diǎn)P,并簡要說明點(diǎn)P的位置是如何找到的(不要求證明)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD中,對角線AC的垂直平分線EF分別交BC,AD于點(diǎn)E,F,若BE=3,AF=5,則AC的長為( )
A. B. C. 10D. 8
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線G:有最低點(diǎn)。
(1)求二次函數(shù)的最小值(用含m的式子表示);
(2)將拋物線G向右平移m個單位得到拋物線G1。經(jīng)過探究發(fā)現(xiàn),隨著m的變化,拋物線G1頂點(diǎn)的縱坐標(biāo)y與橫坐標(biāo)x之間存在一個函數(shù)關(guān)系,求這個函數(shù)關(guān)系式,并寫出自變量x的取值范圍;
(3)記(2)所求的函數(shù)為H,拋物線G與函數(shù)H的圖像交于點(diǎn)P,結(jié)合圖像,求點(diǎn)P的縱坐標(biāo)的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,拋物線經(jīng)過點(diǎn)(2,3),對稱軸為直線x =1.
(1)求拋物線的表達(dá)式;
(2)如果垂直于y軸的直線l與拋物線交于兩點(diǎn)A(, ),B(, ),其中, ,與y軸交于點(diǎn)C,求BCAC的值;
(3)將拋物線向上或向下平移,使新拋物線的頂點(diǎn)落在x軸上,原拋物線上一點(diǎn)P平移后對應(yīng)點(diǎn)為點(diǎn)Q,如果OP=OQ,直接寫出點(diǎn)Q的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】△ABC在邊長為l的正方形網(wǎng)格中如圖所示.
①以點(diǎn)C為位似中心,作出△ABC的位似圖形△A1B1C,使其位似比為1:2.且△A1B1C位于點(diǎn)C的異側(cè),并表示出A1的坐標(biāo).
②作出△ABC繞點(diǎn)C順時針旋轉(zhuǎn)90°后的圖形△A2B2C.
③在②的條件下求出點(diǎn)B經(jīng)過的路徑長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】企業(yè)舉行“愛心一日捐”活動,捐款金額分為五個檔次,分別是50元,100元,150元,200元,300元.宣傳小組隨機(jī)抽取部分捐款職工并統(tǒng)計了他們的捐款金額,繪制成兩個不完整的統(tǒng)計圖,請結(jié)合圖表中的信息解答下列問題:
(1)宣傳小組抽取的捐款人數(shù)為 人,請補(bǔ)全條形統(tǒng)計圖;
(2)統(tǒng)計的捐款金額的中位數(shù)是 元;
(3)在扇形統(tǒng)計圖中,求100元所對應(yīng)扇形的圓心角的度數(shù);
(4)已知該企業(yè)共有500人參與本次捐款,請你估計捐款總額大約為多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD的邊長為4,點(diǎn)E,F分別在邊AB,AD上,且∠ECF=45°,CF的延長線交BA的延長線于點(diǎn)G,CE的延長線交DA的延長線于點(diǎn)H,連接AC,EF.,GH.
(1)填空:∠AHC ∠ACG;(填“>”或“<”或“=”)
(2)線段AC,AG,AH什么關(guān)系?請說明理由;
(3)設(shè)AE=m,
①△AGH的面積S有變化嗎?如果變化.請求出S與m的函數(shù)關(guān)系式;如果不變化,請求出定值.
②請直接寫出使△CGH是等腰三角形的m值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com