如圖,在中,是斜邊上兩點,且繞點

順時針旋轉90°后,得到連接下列結論:①

的面積等于四邊形的面積;④

其中正確的是(    )

 


A.①②④        B.③④⑤       C.①③④       D.①③⑤

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

27、將圖1,將一張直角三角形紙片ABC折疊,使點A與點C重合,這時DE為折痕,△CBE為等腰三角形;再繼續(xù)將紙片沿△CBE的對稱軸EF折疊,這時得到了兩個完全重合的矩形(其中一個是原直角三角形的內接矩形,另一個是拼合成的無縫隙、無重疊的矩形),我們稱這樣兩個矩形為“疊加矩形”.

(1)如圖2,正方形網(wǎng)格中的△ABC能折疊成“疊加矩形”嗎?如果能,請在圖2中畫出折痕;
(2)如圖3,在正方形網(wǎng)格中,以給定的BC為一邊,畫出一個斜三角形ABC,使其頂點A在格點上,且△ABC折成的“疊加矩形”為正方形;
(3)如果一個三角形所折成的“疊加矩形”為正方形,那么它必須滿足的條件是
三角形一邊長與該邊上的高相等
;
(4)如果一個四邊形一定能折成“疊加矩形”,那么它必須滿足的條件是
對角線互相垂直

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

28、操作與探究:
(1)圖①是一塊直角三角形紙片.將該三角形紙片按如圖方法折疊,是點A與點C重合,DE為折痕.試證明△CBE等腰三角形;
(2)再將圖①中的△CBE沿對稱軸EF折疊(如圖②).通過折疊,原三角形恰好折成兩個重合的矩形,其中一個是內接矩形,另一個是拼合(指無縫無重疊)所成的矩形,我們稱這樣的兩個矩形為“組合矩形”.你能將圖③中的△ABC折疊成一個組合矩形嗎?如果能折成,請在圖③中畫出折痕;
(3)請你在圖④的方格紙中畫出一個斜三角形,同時滿足下列條件:①折成的組合矩形為正方形;②頂點都在格點(各小正方形的頂點)上;
(4)有一些特殊的四邊形,如菱形,通過折疊也能折成組合矩形(其中的內接矩形的四個頂點分別在原四邊形的四條邊上).請你進一步探究,一個非特殊的四邊形(指除平行四邊形、梯形外的四邊形)滿足何條件時,一定能折成組合矩形?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

操作與探究:
(1)圖①是一塊直角三角形紙片.將該三角形紙片按如圖方法折疊,是點A與點C重合,DE為折痕.試證明△CBE等腰三角形;
(2)再將圖①中的△CBE沿對稱軸EF折疊(如圖②).通過折疊,原三角形恰好折成兩個重合的矩形,其中一個是內接矩形,另一個是拼合(指無縫無重疊)所成的矩形,我們稱這樣的兩個矩形為“組合矩形”.你能將圖③中的△ABC折疊成一個組合矩形嗎?如果能折成,請在圖③中畫出折痕;
(3)請你在圖④的方格紙中畫出一個斜三角形,同時滿足下列條件:①折成的組合矩形為正方形;②頂點都在格點(各小正方形的頂點)上;
(4)有一些特殊的四邊形,如菱形,通過折疊也能折成組合矩形(其中的內接矩形的四個頂點分別在原四邊形的四條邊上).請你進一步探究,一個非特殊的四邊形(指除平行四邊形、梯形外的四邊形)滿足何條件時,一定能折成組合矩形?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(1)圖①是一塊直角三角形紙片.將該三角形紙片按如圖①方法折疊,其中點A與點C重合,DE為折痕.試證明△CBE是等腰三角形;

(2)再將圖①中的△CBE沿對稱軸EF折疊(如圖②).通過折疊,原三角形恰好折成兩個重合的矩形,其中一個是內接矩形,另一個是拼合(指無縫無重疊)所成的矩形,我們稱這樣的兩個矩形為“組合矩形”.你能將圖③中的△ABC折疊成一個組合矩形嗎?如果能折成,請在圖③中畫出折痕;

(3)請在圖④的方格紙中畫出一個斜三角形,同時滿足下列條件:①折成的組合矩形為正方形;②頂點都在格點(各小正方形的頂點)上;

(4)有一些特殊的四邊形,如菱形,通過折疊也能折成組合矩形(其中的內接矩形的四個頂點分別在原四邊形的四條邊上).請你進一步探究,一個非特殊的四邊形(指除平行四邊形、梯形外的四邊形)滿足何條件時,一定能折成組合矩形?

查看答案和解析>>

科目:初中數(shù)學 來源:2006年江蘇省連云港市中考數(shù)學試卷(課標卷)(解析版) 題型:解答題

(2006•連云港)操作與探究:
(1)圖①是一塊直角三角形紙片.將該三角形紙片按如圖方法折疊,是點A與點C重合,DE為折痕.試證明△CBE等腰三角形;
(2)再將圖①中的△CBE沿對稱軸EF折疊(如圖②).通過折疊,原三角形恰好折成兩個重合的矩形,其中一個是內接矩形,另一個是拼合(指無縫無重疊)所成的矩形,我們稱這樣的兩個矩形為“組合矩形”.你能將圖③中的△ABC折疊成一個組合矩形嗎?如果能折成,請在圖③中畫出折痕;
(3)請你在圖④的方格紙中畫出一個斜三角形,同時滿足下列條件:①折成的組合矩形為正方形;②頂點都在格點(各小正方形的頂點)上;
(4)有一些特殊的四邊形,如菱形,通過折疊也能折成組合矩形(其中的內接矩形的四個頂點分別在原四邊形的四條邊上).請你進一步探究,一個非特殊的四邊形(指除平行四邊形、梯形外的四邊形)滿足何條件時,一定能折成組合矩形?

查看答案和解析>>

同步練習冊答案