(2012•宿遷)綠豆在相同條件下的發(fā)芽試驗,結(jié)果如下表所示:
每批粒數(shù)n 100 300 400 600 1000 2000 3000
發(fā)芽的粒數(shù)m 96 282 382 570 948 1912 2850
發(fā)芽的頻率
m
n
0.960 0.940 0.955 0.950 0.948 0.956 0.950
則綠豆發(fā)芽的概率估計值是 (  )
分析:本題考查了綠豆種子發(fā)芽的概率的求法.對于不同批次的綠豆種子的發(fā)芽率往往誤差會比較大,為了減少誤差,我們經(jīng)常采用多批次計算求平均數(shù)的方法.
解答:解:
.
x
=(96+282+382+570+948+1912+2850)÷(100+300+400+600+1000+2000+3000)≈0.95,
當n足夠大時,發(fā)芽的頻率逐漸穩(wěn)定于0.95,故用頻率估計概率,綠豆發(fā)芽的概率估計值是0.95.
故選B.
點評:考查利用頻率估計概率,大量反復試驗下頻率穩(wěn)定值即概率.用到的知識點為:頻率=所求情況數(shù)與總情況數(shù)之比.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

(2012•宿遷模擬)在△ABC中,若|sinA-
1
2
|+(
3
2
-cosB)2=0,則∠C=
120
120
度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•宿遷)如圖是使用測角儀測量一幅壁畫高度的示意圖,已知壁畫AB的底端距離地面的高度BC=1m,在壁畫的正前方點D處測得壁畫底端的俯角∠BDF=30°,且點D距離地面的高度DE=2m,求壁畫AB的高度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•宿遷)如圖,在四邊形ABCD中,∠DAB=∠ABC=90°,CD與以AB為直徑的半圓相切于點E,EF⊥AB于點F,EF交BD于點G,設AD=a,BC=b.
(1)求CD的長度(用a,b表示);
(2)求EG的長度(用a,b表示);
(3)試判斷EG與FG是否相等,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•宿遷)(1)如圖1,在△ABC中,BA=BC,D,E是AC邊上的兩點,且滿足∠DBE=
1
2
∠ABC(0°<∠CBE<∠
1
2
ABC).以點B為旋轉(zhuǎn)中心,將△BEC按逆時針旋轉(zhuǎn)∠ABC,得到△BE′A(點C與點A重合,點E到點E′處)連接DE′,
求證:DE′=DE.
(2)如圖2,在△ABC中,BA=BC,∠ABC=90°,D,E是AC邊上的兩點,且滿足∠DBE=
1
2
∠ABC(0°<∠CBE<45°).
求證:DE2=AD2+EC2

查看答案和解析>>

同步練習冊答案