【題目】如圖,平面直角坐標(biāo)系中,直線AB:y=kx+3(k≠0)交x軸于點(diǎn)A(4,0),交y軸正半軸于點(diǎn)B,過(guò)點(diǎn)C(0,2)作y軸的垂線CD交AB于點(diǎn)E,點(diǎn)P從E出發(fā),沿著射線ED向右運(yùn)動(dòng),設(shè)PE=n.
(1)求直線AB的表達(dá)式;
(2)當(dāng)△ABP為等腰三角形時(shí),求n的值;
(3)若以點(diǎn)P為直角頂點(diǎn),PB為直角邊在直線CD的上方作等腰Rt△BPM,試問(wèn)隨著點(diǎn)P的運(yùn)動(dòng),點(diǎn)M是否也在直線上運(yùn)動(dòng)?如果在直線上運(yùn)動(dòng),求出該直線的解析式;如果不在直線上運(yùn)動(dòng),請(qǐng)說(shuō)明理由.
【答案】(1)y=﹣x+3;(2)n=或+或﹣+2;(3)在直線上,理由見(jiàn)解析
【解析】
(1)將點(diǎn)A的坐標(biāo)代入直線AB:y=kx+3并解得:k=﹣,即可求解;
(2)分AP=BP、AP=AB、AB=BP三種情況,分別求解即可;
(3)證明△MHP≌△PCB(AAS),求出點(diǎn)M(n+,n+),即可求解.
(1)將點(diǎn)A的坐標(biāo)代入直線AB:y=kx+3并解得:k=﹣,
故AB的表達(dá)式為:y=﹣x+3;
(2)當(dāng)y=2時(shí),x=,故點(diǎn)E(,2),則點(diǎn)P(n+,2),
而點(diǎn)A、B坐標(biāo)分別為:(4,0)、(0,3),
則AP2=(+n﹣4)2+4;BP2=(n+)2+1,AB2=25,
當(dāng)AP=BP時(shí),(+n﹣4)2+4=(n+)2+1,解得:n=;
當(dāng)AP=AB時(shí),同理可得:n=(不合題意值已舍去);
當(dāng)AB=BP時(shí),同理可得:n=﹣+2;
故n=或+或﹣+2;
(3)在直線上,理由:
如圖,過(guò)點(diǎn)M作MD⊥CD于點(diǎn)H,
∵∠BPC+∠PBC=90°,∠BPC+∠MPH=90°,
∴∠CPB=∠MPH,BP=PM,∠MHP=∠PCB=90°
∴△MHP≌△PCB(AAS),
則CP=MH=n+,BC=1=PH,
故點(diǎn)M(n+,n+),
n++1= n+,
故點(diǎn)M在直線y=x+1上.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】任何一個(gè)正整數(shù)n都可以進(jìn)行這樣的分解:n=s×t(s,t是正整數(shù),且s≤t),如果p×q在n的所有這種分解中兩因數(shù)之差的絕對(duì)值最小,我們就稱p×q是n的最佳分解,并規(guī)定:、例如18可以分解成1×18,2×9,3×6這三種,這時(shí)就有.給出下列關(guān)于F(n)的說(shuō)法:(1);(2);(3)F(27)=3;(4)若n是一個(gè)整數(shù)的平方,則F(n)=1.其中正確說(shuō)法的有_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列正確的選項(xiàng)是( )
A.命題“同旁內(nèi)角互補(bǔ)”是真命題
B.“作線段AC”這句話是命題
C.“對(duì)頂角相等”是定義
D.說(shuō)明命題“若x>y,則a2x>a2y”是假命題,只能舉反例a=0
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在中,,,點(diǎn)為的中點(diǎn).
(1)如圖;為線段上任意一點(diǎn),將線段繞點(diǎn)順時(shí)針?lè)较蛐D(zhuǎn)得到線段DF,連結(jié)CF,過(guò)點(diǎn)作,交直線于點(diǎn).
①若,求的度數(shù);
②判斷與的數(shù)量關(guān)系并加以證明.
(2)如圖,若為線段的延長(zhǎng)線上任意一點(diǎn),(1)中的其他條件不變,你在(1)②中得出的結(jié)論是否發(fā)生改變,給出證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在如圖所示的正方形網(wǎng)格中,每個(gè)小正方形的邊長(zhǎng)都為1,△ABC的頂點(diǎn)都在格點(diǎn)上(網(wǎng)格線的交點(diǎn)).
(1)請(qǐng)?jiān)谌鐖D所示的網(wǎng)格平面內(nèi)建立適當(dāng)?shù)钠矫嬷苯亲鴺?biāo)系,使點(diǎn)A坐標(biāo)為(﹣1,2),點(diǎn)B的坐標(biāo)為(﹣5,2);(畫出直角坐標(biāo)系)
(2)點(diǎn)C的坐標(biāo)為( , )(直接寫出結(jié)果)
(3)把△ABC先向下平移6個(gè)單位后得到對(duì)應(yīng)的△A1B1C1,再將△A1B1C1沿y軸翻折至△A2B2C2;
①請(qǐng)?jiān)谧鴺?biāo)系中畫出△A2B2C2;
②若點(diǎn)P(m,n)是△ABC邊上任意一點(diǎn),P2是△A2B2C2邊上與P對(duì)應(yīng)的點(diǎn),寫出點(diǎn)P2的坐標(biāo)為( , );(直接寫出結(jié)果)
③試在y軸上找一點(diǎn)Q,使得點(diǎn)Q到A2,C2兩點(diǎn)的距離之和最小,此時(shí),QA2+QC2的長(zhǎng)度之和最小值為 .(在圖中畫出點(diǎn)Q的位置,并直接寫出最小值答案)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知矩形 OABC,以點(diǎn) O 為坐標(biāo)原點(diǎn)建立平面直角坐標(biāo)系,其中 A(2,0), C(0,3),點(diǎn) P 以每秒 1 個(gè)單位的速度從點(diǎn) C 出發(fā)在射線 CO 上運(yùn)動(dòng),連接 BP,作 BE⊥PB 交 x 軸于點(diǎn) E,連接 PE 交 AB 于點(diǎn) F,設(shè)運(yùn)動(dòng)時(shí)間為 t 秒.
(1)當(dāng) t=2 時(shí),求點(diǎn) E 的坐標(biāo);
(2)在運(yùn)動(dòng)的過(guò)程中,是否存在以 P、O、E 為頂點(diǎn)的三角形與△PCB 相似.若存在,請(qǐng)求出點(diǎn) P 的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀下面的材料,然后解答問(wèn)題:
我們新定義一種三角形,兩邊的平方和等于第三邊平方的2倍的三角形叫做奇異三角形.
(1)理解并填空:
①根據(jù)奇異三角形的定義,請(qǐng)你判斷:等邊三角形一定是奇異三角形嗎? (填“是”或“不是”)
②若某三角形的三邊長(zhǎng)分別為1、、2,則該三角形 (填“是”或“不是”)奇異三角形.
(2)探究:在中,兩邊長(zhǎng)分別是,且,,則這個(gè)三角形是否是奇異三角形?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知一塊四邊形的草地ABCD,其中∠B=90°,AB=20m,BC=15m,CD=7m,DA=24m,求這塊草地的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,是關(guān)于的方程的兩實(shí)根,實(shí)數(shù)、、、的大小關(guān)系可能是( )
A. α<a<b<β B. a<α<β<b C. a<α<b<β D. α<a<β<b
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com