如圖14,在直角梯形ABCD中,AD∥BC,∠ABC=90°,∠C=60°,BC=2AD=2,點(diǎn)E是BC邊的中點(diǎn),△DEF是等邊三角形,DF交AB于點(diǎn)G,則△BFG的周長為 __           

 

3+

解析:已知AD∥BC,∠ABC=90°,點(diǎn)E是BC邊的中點(diǎn),即AD=BE=CE=,

∴四邊形ABED為平四邊形,∴∠DEC=90°,∠A=90°,又∠C=60°,∴DE=CE•tan60°=×=3,

又△DEF是等邊三角形,∴DF=DE=AB=3,∠AGD=∠EDF=60°,∠ADG=30°

∴AG=AD•cot30°=×=1, ∴DG=2,F(xiàn)G=DF-DG=1,BG=3-1=2,∴AG=FG=1,∠AGD=∠FGB,BG=DG=2,∴△AGD≌△BGF,∴BF=AD=,∴△BFG的周長為2+1+=3+.

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

已知:如圖在直角梯形COAB中,OC∥AB,以O(shè)為原點(diǎn)建立平面直角坐標(biāo)系,A、B、C三點(diǎn)的坐標(biāo)分別為A(8,0),B(8,11),C(0,5),點(diǎn)D為線段BC中點(diǎn),已知D點(diǎn)的橫坐標(biāo)為4,動(dòng)點(diǎn)P從點(diǎn)O出發(fā),以每秒1個(gè)單位的速度,沿折線OABD的路線移動(dòng),至點(diǎn)D停止,設(shè)移動(dòng)的時(shí)間為t秒

(1)求直線BC的解析式;
(2)若動(dòng)點(diǎn)P在線段OA上移動(dòng),當(dāng)t為何值時(shí),四邊形OPDC的面積是梯形COAB面積的
14
?
(3)動(dòng)點(diǎn)P從點(diǎn)O出發(fā),沿折線OABD的路線移動(dòng)過程中,設(shè)△OPD面積為S,求S與t的函數(shù)關(guān)系式,并寫出自變量t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖14,在直角梯形ABCD中,AD∥BC,∠ABC=90°,∠C=60°,BC=2AD=2,點(diǎn)E是BC邊的中點(diǎn),△DEF是等邊三角形,DF交AB于點(diǎn)G,則△BFG的周長為  __          

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011-2012學(xué)年山東省九年級(jí)中考模擬數(shù)學(xué)試卷(解析版) 題型:填空題

如圖14,在直角梯形ABCD中,AD∥BC,∠ABC=90°,∠C=60°,BC=2AD=2,點(diǎn)E是BC邊的中點(diǎn),△DEF是等邊三角形,DF交AB于點(diǎn)G,則△BFG的周長為  __           

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012屆山東省寧津縣實(shí)驗(yàn)中學(xué)九年級(jí)中考模擬數(shù)學(xué)試卷(帶解析) 題型:填空題

如圖14,在直角梯形ABCD中,AD∥BC,∠ABC=90°,∠C=60°,BC=2AD=2,點(diǎn)E是BC邊的中點(diǎn),△DEF是等邊三角形,DF交AB于點(diǎn)G,則△BFG的周長為  __          

查看答案和解析>>

同步練習(xí)冊(cè)答案