按圖中所示的方法將長(zhǎng)方體切開(kāi),所得的截面中有________組互相平行的線段.

2
分析:根據(jù)圖中長(zhǎng)方體的切法,可知截面為長(zhǎng)方形,根據(jù)長(zhǎng)方形的性質(zhì)可知.
解答:∵將長(zhǎng)方體切開(kāi),所得的截面是長(zhǎng)方形,
∴所得的截面中有2組互相平行的線段.
點(diǎn)評(píng):本題考查運(yùn)用平行線的判定解決問(wèn)題的能力,能有效地培養(yǎng)“執(zhí)果索圖”的思維方式與能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

23、操作示例:
對(duì)于邊長(zhǎng)為a的兩個(gè)正方形ABCD和EFGH,按圖1所示的方式擺放,在沿虛線BD,EG剪開(kāi)后,可以按圖中所示的移動(dòng)方式拼接為圖1中的四邊形BNED.
從拼接的過(guò)程容易得到結(jié)論:
①四邊形BNED是正方形;
②S正方形ABCD+S正方形EFGH=S正方形BNED
實(shí)踐與探究:
(1)對(duì)于邊長(zhǎng)分別為a,b(a>b)的兩個(gè)正方形ABCD和EFGH,按圖2所示的方式擺放,連接DE,過(guò)點(diǎn)D作DM⊥DE,交AB于點(diǎn)M,過(guò)點(diǎn)M作MN⊥DM,過(guò)點(diǎn)E作EN⊥DE,MN與EN相交于點(diǎn)N;
①證明四邊形MNED是正方形,并用含a,b的代數(shù)式表示正方形MNED的面積;
②在圖2中,將正方形ABCD和正方形EFGH沿虛線剪開(kāi)后,能夠拼接為正方形MNED,請(qǐng)簡(jiǎn)略說(shuō)明你的拼接方法(類(lèi)比圖1,用數(shù)字表示對(duì)應(yīng)的圖形);
(2)對(duì)于n(n是大于2的自然數(shù))個(gè)任意的正方形,能否通過(guò)若干次拼接,將其拼接成為一個(gè)正方形?請(qǐng)簡(jiǎn)要說(shuō)明你的理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【問(wèn)題提出】如何把n個(gè)正方形拼接成一個(gè)大正方形?
為解決上面問(wèn)題,我們先從最基本,最特殊的情形入手.對(duì)于邊長(zhǎng)為a的兩個(gè)正方形ABCD和EFGH,如何把它們拼接成一個(gè)正方形?
【問(wèn)題解決】對(duì)于邊長(zhǎng)為a的兩個(gè)正方形ABCD和EFGH,按圖所示的方式擺放,在沿虛線BD,EG剪開(kāi)后,可以按圖中所示的移動(dòng)方式拼接為圖中的四邊形BNED.從拼接的過(guò)程容易得到結(jié)論:
①四邊形BNED是正方形;
②S正方形ABCD+S正方形EFGH=S正方形BNED
【類(lèi)比應(yīng)用】
對(duì)于邊長(zhǎng)分別為a,b(a>b)的兩個(gè)正方形ABCD和EFGH,按圖所示的方式擺放,連接DE,過(guò)點(diǎn)D作DM⊥DE,交AB于點(diǎn)M,過(guò)點(diǎn)M作MN⊥DM,過(guò)點(diǎn)E作EN⊥DE,MN與EN相交于點(diǎn)N.明四邊形MNED是正方形,并請(qǐng)你用含a,b的代數(shù)式表示正方形MNED的面積;
②如圖,將正方形ABCD和正方形EFGH沿虛線剪開(kāi)后,能夠拼接為正方形MNED,請(qǐng)簡(jiǎn)略說(shuō)明你的拼接方法(類(lèi)比如圖,用數(shù)字表示對(duì)應(yīng)的圖形直接畫(huà)在圖中).
【拓廣延伸】對(duì)于n(n是大于2的自然數(shù))個(gè)任意的正方形,能否通過(guò)若干次拼接,將其拼接成為一個(gè)正方形?請(qǐng)簡(jiǎn)要說(shuō)明你的理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:同步題 題型:探究題

操作示例
對(duì)于邊長(zhǎng)為a的兩個(gè)正方形ABCD和EFGH,按圖1所示的方式擺放,在沿虛線BD、EG剪開(kāi)后,可以按圖中所示的移動(dòng)方式拼接為圖1中的四邊形BNED。
從拼接的過(guò)程容易得到結(jié)論:
①四邊形BNED是正方形; ② 。
     
實(shí)踐與探究
(1)對(duì)于邊長(zhǎng)分別為a,b(a>b)的兩個(gè)正方形ABCD和EFGH,按圖2所示的方式擺放,連接DE,過(guò)點(diǎn)D作DM⊥DE,交AB于點(diǎn)M,過(guò)點(diǎn)M作MN⊥DM,過(guò)點(diǎn)E作EN⊥DE,MN與EN相交于點(diǎn)N。
①證明四邊形MNED是正方形,并用含a,b的代數(shù)式表示正方形MNED的面積;
②在圖2中,將正方形ABCD和正方形EFGH沿虛線剪開(kāi)后,能夠拼接為正方形MNED,請(qǐng)簡(jiǎn)略說(shuō)明你的拼接方法(類(lèi)比圖1,用數(shù)字表示對(duì)應(yīng)的圖形)。
(2)對(duì)于n(n是大于2的自然數(shù))個(gè)任意的正方形,能否通過(guò)若干次拼接,將其拼接成為一個(gè)正方形?請(qǐng)簡(jiǎn)要說(shuō)明你的理由。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2005年全國(guó)中考數(shù)學(xué)試題匯編《四邊形》(09)(解析版) 題型:解答題

(2005•河北)操作示例:
對(duì)于邊長(zhǎng)為a的兩個(gè)正方形ABCD和EFGH,按圖1所示的方式擺放,在沿虛線BD,EG剪開(kāi)后,可以按圖中所示的移動(dòng)方式拼接為圖1中的四邊形BNED.
從拼接的過(guò)程容易得到結(jié)論:
①四邊形BNED是正方形;
②S正方形ABCD+S正方形EFGH=S正方形BNED
實(shí)踐與探究:
(1)對(duì)于邊長(zhǎng)分別為a,b(a>b)的兩個(gè)正方形ABCD和EFGH,按圖2所示的方式擺放,連接DE,過(guò)點(diǎn)D作DM⊥DE,交AB于點(diǎn)M,過(guò)點(diǎn)M作MN⊥DM,過(guò)點(diǎn)E作EN⊥DE,MN與EN相交于點(diǎn)N;
①證明四邊形MNED是正方形,并用含a,b的代數(shù)式表示正方形MNED的面積;
②在圖2中,將正方形ABCD和正方形EFGH沿虛線剪開(kāi)后,能夠拼接為正方形MNED,請(qǐng)簡(jiǎn)略說(shuō)明你的拼接方法(類(lèi)比圖1,用數(shù)字表示對(duì)應(yīng)的圖形);
(2)對(duì)于n(n是大于2的自然數(shù))個(gè)任意的正方形,能否通過(guò)若干次拼接,將其拼接成為一個(gè)正方形?請(qǐng)簡(jiǎn)要說(shuō)明你的理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2005年河北省中考數(shù)學(xué)試卷(大綱卷)(解析版) 題型:解答題

(2005•河北)操作示例:
對(duì)于邊長(zhǎng)為a的兩個(gè)正方形ABCD和EFGH,按圖1所示的方式擺放,在沿虛線BD,EG剪開(kāi)后,可以按圖中所示的移動(dòng)方式拼接為圖1中的四邊形BNED.
從拼接的過(guò)程容易得到結(jié)論:
①四邊形BNED是正方形;
②S正方形ABCD+S正方形EFGH=S正方形BNED
實(shí)踐與探究:
(1)對(duì)于邊長(zhǎng)分別為a,b(a>b)的兩個(gè)正方形ABCD和EFGH,按圖2所示的方式擺放,連接DE,過(guò)點(diǎn)D作DM⊥DE,交AB于點(diǎn)M,過(guò)點(diǎn)M作MN⊥DM,過(guò)點(diǎn)E作EN⊥DE,MN與EN相交于點(diǎn)N;
①證明四邊形MNED是正方形,并用含a,b的代數(shù)式表示正方形MNED的面積;
②在圖2中,將正方形ABCD和正方形EFGH沿虛線剪開(kāi)后,能夠拼接為正方形MNED,請(qǐng)簡(jiǎn)略說(shuō)明你的拼接方法(類(lèi)比圖1,用數(shù)字表示對(duì)應(yīng)的圖形);
(2)對(duì)于n(n是大于2的自然數(shù))個(gè)任意的正方形,能否通過(guò)若干次拼接,將其拼接成為一個(gè)正方形?請(qǐng)簡(jiǎn)要說(shuō)明你的理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案