△ABC是等邊三角形,點D在邊BC上,DE∥AC,△BDE是等邊三角形嗎?試說明理由.

解:△BDE是等邊三角形.理由是
∵△ABC是等邊三角形
∴∠A=∠B=∠C=60°
∵DE∥AC,
∴∠BED=∠A=60°,∠BDE=∠C=60°
∴∠B=∠BED=∠BDE
∴△BDE是等邊三角形.
分析:根據(jù)△ABC是等邊三角形得出∠A=∠B=∠C=60°,利用DE∥AC,求證∠B=∠BED=∠BDE即可得出結論.
點評:此題主要考查學生對等邊三角形的判定與性質和平行線段性質的理解和掌握,難度不大,屬于基礎題.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

已知a、b、c是△ABC的三條邊長,若x=-1為關于x的一元二次方程(c-b)x2-2(b-a)x+(a-b)=0的根.
(1)△ABC是等腰三角形嗎?△ABC是等邊三角形嗎?請寫出你的結論并證明;
(2)若代數(shù)式子
a-2
+
2-a
有意義,且b為方程y2-8y+15=0的根,求△ABC的周長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)已知:如圖,△ABC是等邊三角形,D、E分別是BC、CA上的點,且BD=CE.
(1)求證:AD=BE;(2)求∠AFE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,△ABC是等邊三角形,
(1)用直尺和圓規(guī)作邊BC的高線AD交BC于點D(保留作圖痕跡,不要求寫作法);
(2)若△ABC的邊長為2,求△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2009•裕華區(qū)二模)已知,如圖△ABC是等邊三角形,將一塊含30°角的直角三角板DEF如圖放置,讓△ABC在BC所在的直線l上向左平移.當點B與點E重合時,點A恰好落在三角板的斜邊DF上的M點,點C在N點位置上(假定AB、AC與三角板斜邊的交點為G、H)
問:(1)在△ABC平移過程中,通過測量CH、CF的長度,猜想CH、CF滿足的數(shù)量關系;
(2)在△ABC平移過程中,通過測量BE、AH的長度,猜想BE.AH滿足的數(shù)量關系;
(3)證明(2)中你的猜想.(證明不得含有圖中未標示的字母)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

在△ABC中,AB=AC,若要使△ABC是等邊三角形,那么需添加一個條件:
AB=BC
AB=BC
∠A=60°
∠A=60°
(從不同角度填空).

查看答案和解析>>

同步練習冊答案