如圖,在矩形ABCD中,EH∥FG∥AD,EH,F(xiàn)G分別交AC于點(diǎn)M,N,EF=,設(shè)四邊形AMHD的面積為S1,四邊形EFNM的面積為S2,三角形NCG的面積為S3,則S1,S2,S3的數(shù)量關(guān)系是   
【答案】分析:取ER=AE,過(guò)點(diǎn)M作KP∥AB,過(guò)點(diǎn)T作LQ∥AB,過(guò)點(diǎn)R作RT∥AD,則可得四邊形ABCD是矩形AD∥EH∥FG∥BC,可得四邊形EMSR、AEMK、KLOM與RTQF是矩形,再利用三角形全等與相似即可求得S2=S1+S3
解答:解:取ER=AE,過(guò)點(diǎn)M作KP∥AB,過(guò)點(diǎn)T作LQ∥AB,過(guò)點(diǎn)R作RT∥AD,

∵四邊形ABCD是矩形AD∥EH∥FG∥BC,
∴四邊形EMSR、AEMK、KLOM與RTQF是矩形,
∴AE=KM=ER=MS,AK=EM=RS,
∵∠AEM=∠MST=90°,∠KAM=∠STM,
∴△AKM≌△TSM,∴ST=AK,
∴AK=KL=ST=RS,
∴S矩形EMSR=S矩形KLOM,
∵∠TQN=∠CGN=90°,∠TNQ=∠CNG,
∵EF=
∴AE+BF=AB,
∴EF=AE+BF,
∴RF=BF=CG,
∴△TQN≌△CGN,
∴QN=GN,
∴S矩形LOHD=DL•DH=2NG•AE,
S矩形RTQF=FQ•FR=2EM•CG,
∵△AEM∽△CGN,

∴AE•NG=CG•EM,
∴S矩形LOHD=S矩形RTQF,
∵S2=S矩形EMSR+S矩形RTGF+S△MTS+S△NQT,S1+S3=S矩形KMOL+S△AKM+S矩形LOHD+S△NGC,
∴S1+S3=S2
故答案為:S1+S3=S2
點(diǎn)評(píng):此題考查了相似三角形的性質(zhì)與判定以及矩形的性質(zhì),平行線的性質(zhì)等知識(shí),綜合性很強(qiáng),注意數(shù)形結(jié)合思想與整體思想的應(yīng)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在矩形ABCD中,AB=4cm,BC=8cm,點(diǎn)P從點(diǎn)A出發(fā)以1cm/s的速度向點(diǎn)B運(yùn)動(dòng),點(diǎn)Q從點(diǎn)B出發(fā)以2cm/s的速度向點(diǎn)C運(yùn)動(dòng),設(shè)經(jīng)過(guò)的時(shí)間為xs,△PBQ的面積為ycm2,則下列圖象能反映y與x之間的函數(shù)關(guān)系的是(  )
A、精英家教網(wǎng)B、精英家教網(wǎng)C、精英家教網(wǎng)D、精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在矩形ABCD中,點(diǎn)O在對(duì)角線AC上,以O(shè)A的長(zhǎng)為半徑的⊙O與AD、AC分別交于點(diǎn)E、F,且∠ACB=∠DCE精英家教網(wǎng)
(1)判斷直線CE與⊙O的位置關(guān)系,并說(shuō)明理由;
(2)若AB=
2
,BC=2,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖①,在矩形 ABCD中,AB=30cm,BC=60cm.點(diǎn)P從點(diǎn)A出發(fā),沿A→B→C→D路線向點(diǎn)D勻速運(yùn)動(dòng),到達(dá)點(diǎn)D后停止;點(diǎn)Q從點(diǎn)D出發(fā),沿 D→C→B→A路線向點(diǎn)A勻速運(yùn)動(dòng),到達(dá)點(diǎn)A后停止.若點(diǎn)P、Q同時(shí)出發(fā),在運(yùn)動(dòng)過(guò)程中,Q點(diǎn)停留了1s,圖②是P、Q兩點(diǎn)在折線AB-BC-CD上相距的路程S(cm)與時(shí)間t(s)之間的函數(shù)關(guān)系圖象.
(1)請(qǐng)解釋圖中點(diǎn)H的實(shí)際意義?
(2)求P、Q兩點(diǎn)的運(yùn)動(dòng)速度;
(3)將圖②補(bǔ)充完整;
(4)當(dāng)時(shí)間t為何值時(shí),△PCQ為等腰三角形?請(qǐng)直接寫(xiě)出t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在矩形ABCD中,對(duì)角線AC,BD相交于點(diǎn)O,∠AOB=60°,AB=6,則AD=( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在矩形ABCD中,AB=4,BC=6,E為線段BC上的動(dòng)點(diǎn)(不與B、C重合).連接DE,作EF⊥DE,EF與AB交于點(diǎn)F,設(shè)CE=x,BF=y.
(1)求y與x的函數(shù)關(guān)系式;
(2)x為何值時(shí),y的值最大,最大值是多少?
(3)若設(shè)線段AB的長(zhǎng)為m,上述其它條件不變,m為何值時(shí),函數(shù)y的最大值等于3?

查看答案和解析>>

同步練習(xí)冊(cè)答案