【題目】已知,如圖,正方形ABCD中,E為BC邊上一點(diǎn),F(xiàn)為BA延長線上一點(diǎn),且CE=AF.連接DE、DF.求證:DE=DF.
【答案】證明:∵四邊形ABCD是正方形, ∴AD=CD,∠DAB=∠C=90°,
∴∠FAD=180°﹣∠DAB=90°.
在△DCE和△DAF中,
,
∴△DCE≌△DAF(SAS),
∴DE=DF
【解析】根據(jù)正方形的性質(zhì)可得AD=CD,∠C=∠DAF=90°,然后利用“邊角邊”證明△DCE和△DAF全等,再根據(jù)全等三角形對應(yīng)邊相等證明即可.
【考點(diǎn)精析】關(guān)于本題考查的正方形的性質(zhì),需要了解正方形四個角都是直角,四條邊都相等;正方形的兩條對角線相等,并且互相垂直平分,每條對角線平分一組對角;正方形的一條對角線把正方形分成兩個全等的等腰直角三角形;正方形的對角線與邊的夾角是45o;正方形的兩條對角線把這個正方形分成四個全等的等腰直角三角形才能得出正確答案.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠A=36°,AB=AC,AB的垂直平分線OD交AB于點(diǎn)O,交AC于點(diǎn)D,連接BD.下列結(jié)論錯誤的是( )
A. ∠C=2∠A B. BD平分∠ABC C. S△BCD=S△BOD D. 點(diǎn)D為線段AC的黃金分割點(diǎn)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)如圖(1),AB∥CD,探究∠BED與∠B+∠D的關(guān)系;
(2)如圖(2),AB∥CD,類比上述方法,試探究∠E+∠G與∠B+∠F+∠D的關(guān)系,并寫出推理過程;
(3)如圖(3),AB∥CD,請直接寫出你能得到的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一次函數(shù)y= x﹣b與y= x﹣1的圖象之間的距離等于3,則b的值為( )
A.﹣2或4
B.2或﹣4
C.4或﹣6
D.﹣4或6
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知ABCD的三個頂點(diǎn)A(n,0)、B(m,0)、D(0,2n)(m>n>0),作ABCD關(guān)于直線AD的對稱圖形AB1C1D
(1)若m=3,試求四邊形CC1B1B面積S的最大值;
(2)若點(diǎn)B1恰好落在y軸上,試求 的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,AB=AC,E在BA的延長線上,AD平分∠CAE.
(1)求證:AD∥BC;
(2)過點(diǎn)C作CG⊥AD于點(diǎn)F,交AE于點(diǎn)G,若AF=4,求BC的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,把直角三角板的直角頂點(diǎn)O放在破損玻璃鏡的圓周上,兩直角邊與圓弧分別交于點(diǎn)M、N,量得OM=8cm,ON=6cm,則該圓玻璃鏡的半徑是( )
A. cm
B.5cm
C.6cm
D.10cm
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com