如圖是二次函數(shù)y=ax2+bx+c圖象的一部分,其對稱軸為x=-1,且過點(-3,0).下列說法:①abc<0;②2a-b=0;③4a+2b+c<0;④3a+c=0;則其中說法正確的是(  ).
A.①②B.②③C.①②④D.②③④
C.

試題分析:∵二次函數(shù)的圖象開口向上,
∴a>0,
∵二次函數(shù)的圖象交y軸的負半軸于一點,
∴c<0,
∵對稱軸是中線x=-1,
∴-=-1,∴b=2a>0,
∴abc<0,∴①正確;
∵b=2a,
∴2a-b=0,∴②正確;
把x=2代入y=ax2+bx+c得:y=4a+2b+c,
從圖象可知,當(dāng)x=2時y<0,
即4a+2b+c<0,∴③錯誤;
當(dāng)x=-3時,y=9a-3b+c=0
又b=2a
所以:9a-6a+c=3a+c=0,∴4正確;
故選C.
考點: 二次函數(shù)圖象與系數(shù)的關(guān)系.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

二次函數(shù)的圖象的頂點坐標(biāo)是(   )
A.(1,3)B.(1,3)C.(1,3)D.(1,3)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在平面直角坐標(biāo)系中,拋物線y=ax2+bx+c(a≠0)的圖象經(jīng)過M(1,0)和N(3,0)兩點,且與y軸交于D(0,3),直線l是拋物線的對稱軸.

(1)求該拋物線的解析式.
(2)若過點A(﹣1,0)的直線AB與拋物線的對稱軸和x軸圍成的三角形面積為6,求此直線的解析式.
(3)點P在拋物線的對稱軸上,⊙P與直線AB和x軸都相切,求點P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

某職業(yè)學(xué)校三名學(xué)生到某超市參加了社會實踐活動,在活動中他們參與了某種水果的銷售工作,已知該水果的進價為8元/千克,下面是他們在活動結(jié)束后的對話。
A:如果以10元/千克的價格銷售,那么每天可售出300千克.
B:如果以13元/千克的價格銷售,那么每天可獲取利潤750元.
C:通過調(diào)查驗證,我發(fā)現(xiàn)每天的銷售量y(千克)與銷售單價x(元)之間存在一次函數(shù)關(guān)系.
(1)求y(千克)與x(元)(x>0)的函數(shù)關(guān)系式;
(2)當(dāng)銷售單價為何值時,該超市銷售這種水果每天獲取的利潤達到600元?【利潤=銷售量×(銷售單價-進價)】
(3)一段時間后,發(fā)現(xiàn)這種水果每天的銷售量均不低于225千克.則此時該超市銷售這種水果每天獲取的最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

在平面直角坐標(biāo)系xOy中,拋物線與x軸交于A、B兩點(點A在點B的左側(cè)),點B的坐標(biāo)為,與y軸交于點,頂點為D。

(1)求拋物線的解析式及頂點D坐標(biāo);
(2)聯(lián)結(jié)AC、BC,求∠ACB的正切值;

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

點A(2,y1)、B(3,y2)是二次函數(shù)y=x2-2x+1的圖象上兩點,則y1與y2的大小關(guān)系為y1________y2(填“>”、“<”、“=”).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

拋物線y=3x2,y=-3x2,y=x2+3共有的性質(zhì)是
A.開口向上B.對稱軸是y軸
C.都有最高點D.y隨x值的增大而增大

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

下列關(guān)于拋物線的關(guān)系說法中,正確的是( )
A.它們的形狀相同,開口也相同;
B.它們都關(guān)于軸對稱;
C.它們的頂點不相同;
D.點(,)既在拋物線上也在

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

二次函數(shù)y=2(x+1)2-3的圖象的對稱軸是(   )
A.直線x=-1B.直線x=1C.直線x=-3D.直線x=3

查看答案和解析>>

同步練習(xí)冊答案