如圖,直徑為10的⊙A經(jīng)過點C(0,5)和點O(0,0),B是y軸右側(cè)⊙A優(yōu)弧上一點,則cos∠OBC的值為( )
A. B. C. D.
B.
【解析】
試題分析:連接CD,由∠COD為直角,根據(jù)90°的圓周角所對的弦為直徑,可得出CD為圓A的直徑,再利用同弧所對的圓周角相等得到∠CBO=∠CDO,在直角三角形OCD中,由CD及OC的長,利用勾股定理求出OD的長,然后利用余弦函數(shù)定義求出cos∠CDO的值,即為cos∠CBO的值.
連接CD,如圖所示:
∵∠COD=90°,
∴CD為圓A的直徑,即CD過圓心A,
又∵∠CBO與∠CDO為所對的圓周角,
∴∠CBO=∠CDO,
又∵C(0,5),
∴OC=5,
在Rt△CDO中,CD=10,CO=5,
根據(jù)勾股定理得:
∴.
故選B
考點: 1.圓周角定理;2.勾股定理;3.銳角三角函數(shù)的定義.
科目:初中數(shù)學 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com