分析 在RT△ABC中利用勾股定理求出BC,在RT△A′B′C中利用勾股定理求出A′C,再利用AA′=A′C-AC即可解決問(wèn)題.
解答 解:在RT△ABC中,∵AB=2.5,AC=1.5,
∴BC=$\sqrt{A{B}^{2}-B{C}^{2}}$=$\sqrt{2.{5}^{2}-1.{5}^{2}}$=1.2米,
在RT△A′B′C中,∵A′B′=2.5,B′C=BC-BB′=0.7,
∴A′C=$\sqrt{A′B{′}^{2}-B′{C}^{2}}$=$\sqrt{2.{5}^{2}-0.{7}^{2}}$=2.4米,
∴AA′=A′C-AC=2.4-1.5=0.9米,
∴梯子靠墻的一端A會(huì)沿墻壁上升0.9米.
點(diǎn)評(píng) 本題考查了勾股定理的應(yīng)用,解答本題的關(guān)鍵是兩次運(yùn)用勾股定理,學(xué)會(huì)靈活運(yùn)用勾股定理的表達(dá)式.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | b-a>0 | B. | a+b<0 | C. | ab<0 | D. | b<a |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | -2 | B. | 2 | C. | -1 | D. | 1 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | x0>-1 | B. | x0≥-1 | C. | x0>3 | D. | x0≥3 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com