(2010•廣州)如圖,BD是△ABC的角平分線,∠ABD=36°,∠C=72°,則圖中的等腰三角形有    個(gè).
【答案】分析:由BD是△ABC的角平分線,可得∠ABC=2∠ABD=72°,又可求∠ABC=∠C=72°,所以△ABC是等腰三角形;又∠A=180°-2∠ABC=180°-2×72°=36°,故∠A=∠ABD,所以△ABD是等腰三角形;
由∠DBC=∠ABD=36°,得∠C=72°,可求∠BDC=72°,故∠BDC=∠C,所以△BDC是等腰三角形.
解答:解:∵BD是△ABC的角平分線,
∴∠ABC=2∠ABD=72°,
∴∠ABC=∠C=72°,
∴△ABC是等腰三角形①.
∠A=180°-2∠ABC=180°-2×72°=36°,
∴∠A=∠ABD,
∴△ABD是等腰三角形②.
∵∠DBC=∠ABD=36°,∠C=72°,
∴∠BDC=72°,
∴∠BDC=∠C,
∴△BDC是等腰三角形③.
故圖中的等腰三角形有3個(gè).
故填3.
點(diǎn)評(píng):本題考查了等腰三角形的性質(zhì)和判定、角的平分線的性質(zhì)及三角形內(nèi)角和定理;由已知條件利用相關(guān)的性質(zhì)求得各個(gè)角的度數(shù)是正確解答本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2010年全國中考數(shù)學(xué)試題匯編《三角形》(17)(解析版) 題型:解答題

(2010•廣州)如圖,⊙O的半徑為1,點(diǎn)P是⊙O上一點(diǎn),弦AB垂直平分線段OP,點(diǎn)D是上任一點(diǎn)(與端點(diǎn)A、B不重合),DE⊥AB于點(diǎn)E,以點(diǎn)D為圓心、DE長為半徑作⊙D,分別過點(diǎn)A、B作⊙D的切線,兩條切線相交于點(diǎn)C.
(1)求弦AB的長;
(2)判斷∠ACB是否為定值?若是,求出∠ACB的大小;否則,請(qǐng)說明理由;
(3)記△ABC的面積為S,若=4,求△ABC的周長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年全國中考數(shù)學(xué)試題匯編《一次函數(shù)》(06)(解析版) 題型:解答題

(2010•廣州)如圖所示,四邊形OABC是矩形,點(diǎn)A、C的坐標(biāo)分別為(3,0),(0,1),點(diǎn)D是線段BC上的動(dòng)點(diǎn)(與端點(diǎn)B、C不重合),過點(diǎn)D作直線y=-x+b交折線OAB于點(diǎn)E.
(1)記△ODE的面積為S,求S與b的函數(shù)關(guān)系式;
(2)當(dāng)點(diǎn)E在線段OA上時(shí),若矩形OABC關(guān)于直線DE的對(duì)稱圖形為四邊形O1A1B1C1,試探究O1A1B1C1與矩形OABC的重疊部分的面積是否發(fā)生變化?若不變,求出該重疊部分的面積;若改變,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年廣東省廣州市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2010•廣州)如圖所示,四邊形OABC是矩形,點(diǎn)A、C的坐標(biāo)分別為(3,0),(0,1),點(diǎn)D是線段BC上的動(dòng)點(diǎn)(與端點(diǎn)B、C不重合),過點(diǎn)D作直線y=-x+b交折線OAB于點(diǎn)E.
(1)記△ODE的面積為S,求S與b的函數(shù)關(guān)系式;
(2)當(dāng)點(diǎn)E在線段OA上時(shí),若矩形OABC關(guān)于直線DE的對(duì)稱圖形為四邊形O1A1B1C1,試探究O1A1B1C1與矩形OABC的重疊部分的面積是否發(fā)生變化?若不變,求出該重疊部分的面積;若改變,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年廣東省廣州市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2010•廣州)如圖,⊙O的半徑為1,點(diǎn)P是⊙O上一點(diǎn),弦AB垂直平分線段OP,點(diǎn)D是上任一點(diǎn)(與端點(diǎn)A、B不重合),DE⊥AB于點(diǎn)E,以點(diǎn)D為圓心、DE長為半徑作⊙D,分別過點(diǎn)A、B作⊙D的切線,兩條切線相交于點(diǎn)C.
(1)求弦AB的長;
(2)判斷∠ACB是否為定值?若是,求出∠ACB的大。环駝t,請(qǐng)說明理由;
(3)記△ABC的面積為S,若=4,求△ABC的周長.

查看答案和解析>>

同步練習(xí)冊(cè)答案