如圖,一次函數(shù))的圖象經(jīng)過點A.當(dāng)時,x的取值范
圍是        
x>2
本題考查一次函數(shù)的性質(zhì).
由圖知,而,則的增大而減;當(dāng)時,,則當(dāng)時,必有.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

一次函數(shù)的圖像如圖所示,當(dāng)0時,x的取值范圍是  ▲   .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,直線l:y=x+2與y軸交于點A,將直線l繞點A旋轉(zhuǎn)90º后,所得直
線的解析式為【   】
A.y=x-2B.y=-x+2
C.y=-x-2D.y=-2x-1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分12分)如圖,在平面直角坐標(biāo)系中,直線分別交軸,軸于A,B兩點,點COB的中點,點D在第二象限,且四邊形AOCD為矩形.
(1)直接寫出點A,B的坐標(biāo),并求直線ABCD交點的坐標(biāo);
(2)動點P從點C出發(fā),沿線段CD以每秒1個單位長度的速度向終點D運動;同時,動點M從點A出發(fā),沿線段AB以每秒個單位長度的速度向終點B運動,過點P,垂足為H,連接.設(shè)點P的運動時間為秒.
①若△MPH與矩形AOCD重合部分的面積為1,求的值;
②點Q是點B關(guān)于點A的對稱點,問是否有最小值,如果有,求出相應(yīng)的點P的坐標(biāo);如果沒有,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,把直線向上平移后得到直線,直線經(jīng)過點,且,則直線的解析式是(   )
A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

(11·湖州)(本小題6分)
已知:一次函數(shù)y=kx+b的圖象經(jīng)過M(0,2),(1,3)兩點。
⑴求k,b的值;
⑵若一次函數(shù)y=kx+b的圖象與x軸交點為A(a,0),求a的值。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

北京時間2011年3月11日46分,日本東部海域發(fā)生9級強(qiáng)烈地震并引發(fā)海嘯.在其災(zāi)區(qū),某藥品的需求量急增.如圖所示,在平常對某種藥品的需求量y1(萬件).供應(yīng)量y2(萬件)與價格x(元∕件)分別近似滿足下列函數(shù)關(guān)系式:,,需求量為0時,即停止供應(yīng).當(dāng)時,該藥品的價格稱為穩(wěn)定價格,需求量稱為穩(wěn)定需求量.
(1)求該藥品的穩(wěn)定價格與穩(wěn)定需求量.
(2)價格在什么范圍內(nèi),該藥品的需求量低于供應(yīng)量?
(3)由于該地區(qū)災(zāi)情嚴(yán)重,政府部門決定對藥品供應(yīng)方提供價格補(bǔ)貼來提高供貨價格,以提高供應(yīng)量.根據(jù)調(diào)查統(tǒng)計,需將穩(wěn)定需求量增加6萬件,政府應(yīng)對每件藥品提供多少元補(bǔ)貼,才能使供應(yīng)量等于需求量.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

一個裝有進(jìn)水管和出水管的容器,從某時刻起只打開進(jìn)水管進(jìn)水,經(jīng)過一段時間,再打開出水管放水.至12分鐘時,關(guān)停進(jìn)水管.在打開進(jìn)水管到關(guān)停進(jìn)水管這段時間內(nèi),容器內(nèi)的水量y(單位:升)與時間x(單位:分鐘)之間的函數(shù)關(guān)系如圖所示.關(guān)停進(jìn)水管后,經(jīng)過_____分鐘,容器中的水恰好放完.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:計算題

已知直線與雙曲線交于點P().
(1)求m的值;
(2)若點在雙曲線上.且,試比較的大。

查看答案和解析>>

同步練習(xí)冊答案