2、如圖,若△ABC≌△DEF,∠A=45°,∠F=35°,則∠E等于( 。
分析:要求∠E的大小,先要求出△DFE中∠D的大小,根據(jù)全等三角形的性質(zhì)可知∠D=∠A=45°,然后利用三角形的內(nèi)角和可得答案.
解答:解:∵△ABC≌△DEF,∠A=45°,∠F=35°
∴∠D=∠A=45°
∴∠E=180°-∠D-∠F=100°.故選D.
點評:本題用到的知識點為:全等三角形的對應角相等.注意在計算角的度數(shù)的時候各角的度數(shù)應整理到一個三角形中、找準對應角是解決本題的關鍵.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

11、如圖,若△ABC≌△DEF,且∠A=80°,∠B=30°,則∠F=
70
°.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

9、如圖,若△ABC繞點A旋轉(zhuǎn)能與△ADE重合,其中AB與AD重合,AE與AC重合,∠EAD=120°,則∠CAB=
120
度;若∠CAE=35°,則∠BAD=
35
度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖①,△ABC中,AB=AC,∠B、∠C的平分線交于O點,過O點作EF∥BC交AB、AC于E、F.
(1)圖中有幾個等腰三角形?猜想:EF與BE、CF之間有怎樣的數(shù)量關系,并說明理由.
(2)如圖②,若AB≠AC,其他條件不變,圖中還有等腰三角形嗎?如果有,分別指出它們.在第(1)問中EF與BE、CF間的關系還存在嗎?
(3)如圖③,若△ABC中∠B的平分線BO與三角形外角平分線CO交于O,過O點作OE∥BC交AB于E,交AC于F.這時圖中還有等腰三角形嗎?EF與BE、CF關系又如何?說明你的理由.
(4)若△ABC中∠C的平分線CO與三角形外角平分線BO交于O,過O點作OE∥BC交AB于E,交AC于F.這時EF與BE、CF關系又如何?(直接寫出來,不需說明理由)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,若△ABC與△BCD都是直角三角形,∠BDC=∠BAC=Rt∠.點E是BC的中點,連接DE、AE、AD,求證:△ADE是等腰三角形.

查看答案和解析>>

同步練習冊答案