【題目】如圖,∠MON=90°,點(diǎn)A、B分別在邊ON和OM上(∠OAB≠45°).
(1)根據(jù)要求,利用尺規(guī)作圖,補(bǔ)全圖形:
第①步:作∠MON的平分線OC,作線段AB的垂直平分線l,OC和l交于點(diǎn)P,第②步:連接PA、PB;
(2)結(jié)合補(bǔ)完整的圖形,判斷PA和PB有什么數(shù)量關(guān)系和位置關(guān)系?并說明理由.
【答案】(1)見詳解;(2)AP=BP,AP⊥BP,理由見詳解.
【解析】
(1)利用尺規(guī)作圖的方法,作出∠MON的平分線OC,作線段AB的垂直平分線l,OC和l交于點(diǎn)P,連接PA、PB;
(2)由垂直平分線定理,得到AP=BP;作PD⊥ON與D,PE⊥OM與E,由點(diǎn)P在OC上,則PD=PE,即可證明Rt△ADP≌Rt△BEP,則∠APD=∠BPE,由∠DPE=90°,得到∠APB=90°,然后得到AP⊥BP.
解:(1)如圖所示;
(2)AP=BP,AP⊥BP;
理由如下:
∵直線l垂直平分AB,點(diǎn)P在l上,
∴AP=BP;
如上圖,作PD⊥ON與D,PE⊥OM與E,
∵點(diǎn)P在∠MON的平分線OC上,
∴PD=PE,
∴Rt△ADP≌Rt△BEP(HL),
∴∠APD=∠BPE;
∵∠MON=90°,PD⊥ON,PE⊥OM,PD=PE,
∴四邊形OEPD是正方形;
∴∠DPE=90°,
∴∠APD+∠DPB=∠DPB+∠BPE=∠DPE=90°,
∴∠APB=90°,
∴AP⊥BP.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知,直線分別交軸軸于、兩點(diǎn),、的長(zhǎng)滿足,點(diǎn)是直線上一點(diǎn),且.
求直線的解析式;
求過點(diǎn)的反比例函數(shù)解析式;
點(diǎn)在反比例函數(shù)圖象上是否存在一點(diǎn),使以點(diǎn)、、、為頂點(diǎn),為腰的四邊形為梯形?若存在,請(qǐng)直接寫出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將△ABC分別沿AB,AC翻折得到△ABD 和△AEC,線段BD與AE交于點(diǎn) F,連接BE .
(1)如果∠ABC=16,∠ACB=30°,求∠DAE的度數(shù);
(2)如果BD⊥CE,求∠CAB 的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】建立模型:
如圖1,等腰Rt△ABC中,∠ABC=90°,CB=BA,直線ED經(jīng)過點(diǎn)B,過A作AD⊥ED于D,過C作CE⊥ED于E.則易證△ADB≌△BEC.這個(gè)模型我們稱之為“一線三垂直”.它可以把傾斜的線段AB和直角∠ABC轉(zhuǎn)化為橫平豎直的線段和直角,所以在平面直角坐標(biāo)系中被大量使用.
模型應(yīng)用:
(1)如圖2,點(diǎn)A(0,4),點(diǎn)B(3,0),△ABC是等腰直角三角形.
①若∠ABC=90°,且點(diǎn)C在第一象限,求點(diǎn)C的坐標(biāo);
②若AB為直角邊,求點(diǎn)C的坐標(biāo);
(2)如圖3,長(zhǎng)方形MFNO,O為坐標(biāo)原點(diǎn),F的坐標(biāo)為(8,6),M、N分別在坐標(biāo)軸上,P是線段NF上動(dòng)點(diǎn),設(shè)PN=n,已知點(diǎn)G在第一象限,且是直線y=2x一6上的一點(diǎn),若△MPG是以G為直角頂點(diǎn)的等腰直角三角形,請(qǐng)直接寫出點(diǎn)G的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABO中,∠OBA=90°,AB=OB,點(diǎn)C在邊AB上,且C(6,4),點(diǎn)D為OB的中點(diǎn),點(diǎn)P為邊OA上的動(dòng)點(diǎn),當(dāng)∠APC=∠DPO時(shí),點(diǎn)P的坐標(biāo)為 ____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,邊長(zhǎng)為1的正方形ABCD的對(duì)角線AC,BD相交于點(diǎn)O,直角∠MPN的頂點(diǎn)P與點(diǎn)O重合,直角邊PM,PN分別與OA,OB重合,然后逆時(shí)針旋轉(zhuǎn)∠MPN,旋轉(zhuǎn)角為θ(0°<θ<90°),PM、PN分別交AB、BC于E、F兩點(diǎn),連接EF交OB于點(diǎn)G,則下列結(jié)論中正確的是_____.
(1)EF=OE;(2)S四邊形OEBF:S正方形ABCD=1:4;(3)在旋轉(zhuǎn)過程中,當(dāng)△BEF與△COF的面積之和最大時(shí),AE=;(4)OGBD=AE2+CF2.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB="AC," AB+BC=8.將△ABC折疊,使得點(diǎn)A落在點(diǎn)B處,折痕DF分別與AB、AC交于點(diǎn)D、F,連接BF,則△BCF的周長(zhǎng)是( )
A.8B.16C.4D.10
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示是甲乙兩個(gè)工程隊(duì)完成某項(xiàng)工程的進(jìn)度圖,首先是甲獨(dú)做了10天,然后兩隊(duì)合做,完成剩下的工程.
(1)甲隊(duì)單獨(dú)完成這項(xiàng)工程,需要多少天?
(2)求乙隊(duì)單獨(dú)完成這項(xiàng)工程需要的天數(shù);
(3)實(shí)際完成的時(shí)間比甲獨(dú)做所需的時(shí)間提前多少天?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)B,F,C,E在同一條直線上,點(diǎn)A,D在直線BE的兩側(cè),AB∥DE,BF=CE,添加一個(gè)適當(dāng)?shù)臈l件后,仍不能使得△ABC≌△DEF( 。
A.AC=DFB.AC∥DFC.∠A=∠DD.AB=DE
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com