【題目】如圖,已知△ABC中,AB=AC,AD為中線,點(diǎn)P是AD上一點(diǎn),點(diǎn)Q是AC上一點(diǎn),且∠BPQ+∠BAQ=180°.
(1)若∠ABP=α,求∠PQC的度數(shù)(用含α的式子表示);
(2)求證:BP=PQ.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在中,于E,,D是AE上的一點(diǎn),且,連接BD,CD.
試判斷BD與AC的位置關(guān)系和數(shù)量關(guān)系,并說明理由;
如圖2,若將繞點(diǎn)E旋轉(zhuǎn)一定的角度后,試判斷BD與AC的位置關(guān)系和數(shù)量關(guān)系是否發(fā)生變化,并說明理由;
如圖3,若將中的等腰直角三角形都換成等邊三角形,其他條件不變.
試猜想BD與AC的數(shù)量關(guān)系,請直接寫出結(jié)論;
你能求出BD與AC的夾角度數(shù)嗎?如果能,請直接寫出夾角度數(shù);如果不能,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是二次函數(shù)y=ax2+bx+c的圖象的一部分,對稱軸是直線x=1.
①b2>4ac;
②4a﹣2b+c<0;
③不等式ax2+bx+c>0的解集是x≥3.5;
④若(﹣2,y1),(5,y2)是拋物線上的兩點(diǎn),則y1<y2.
上述4個判斷中,正確的是( )
A.①② B.①④ C.①③④ D.②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(11·湖州)如圖,已知拋物線經(jīng)過點(diǎn)(0,-3),請你確定一個
b的值,使該拋物線與x軸的一個交點(diǎn)在(1,0)和(3,0)之間。你確定的b的值是 ▲ 。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,對于點(diǎn)與圖形,若點(diǎn)為圖形上任意一點(diǎn), 點(diǎn)關(guān)于第一、三象限角平分線的對稱點(diǎn)為 ,且線段的中點(diǎn)為,則稱點(diǎn)是圖形關(guān)于點(diǎn)的“關(guān)聯(lián)點(diǎn)”
(1)如圖1,若點(diǎn)是點(diǎn)關(guān)于原點(diǎn)的關(guān)聯(lián)點(diǎn),則點(diǎn)的坐標(biāo)為
(2)如圖2,在中,
①將線段向右平移個單位長度,若平移后的線段上存在兩個關(guān)于點(diǎn)的關(guān)聯(lián)點(diǎn),則的取值范圍是
②已知點(diǎn)和點(diǎn),若線段上存在關(guān)于點(diǎn)的關(guān)聯(lián)點(diǎn),求的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形ABCD中,AB=AD=6,AB⊥BC,AD⊥CD,∠BAD=60°,點(diǎn)M、N分別在AB、AD邊上,若AM:MB=AN:ND=1:2,則tan∠MCN=
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(9分)如圖所示,某數(shù)學(xué)活動小組選定測量小河對岸大樹BC的高度,他們在斜坡上D處測得大樹頂端B的仰角是30,朝大樹方向下坡走6米到達(dá)坡底A處,在A處測得大樹頂端B的仰角是48°. 若坡角∠FAE=30°,求大樹的高度. (結(jié)果保留整數(shù),參考數(shù)據(jù):sin48°≈0.74,cos48°≈0.67,tan48°≈1.11,≈1.73)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系上有點(diǎn)A(1,0),點(diǎn)A第一次跳動至點(diǎn),第二次點(diǎn)跳動至點(diǎn)第三次點(diǎn)跳動至點(diǎn),第四次點(diǎn)跳動至點(diǎn)……,依此規(guī)律跳動下去,則點(diǎn)與點(diǎn)之間的距離是( )
A. 2017B. 2018C. 2019D. 2020
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,菱形ABCD中,點(diǎn)E,F(xiàn),G,H分別在邊AB,BC,CD,DA上,且BE=BF=DH=DG.
(1)求證:四邊形EFGH是矩形;
(2)已知∠B=60°,AB=6.
請從A,B兩題中任選一題作答,我選擇 題.
A題:當(dāng)點(diǎn)E是AB的中點(diǎn)時,矩形EFGH的面積是 .
B題:當(dāng)BE= 時,矩形EFGH的面積是8.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com