【題目】如圖,在矩形ABCD中,E是BC邊上的點(diǎn),連接AE、DE,將△DEC沿線段DE翻折,點(diǎn)C恰好落在線段AE上的點(diǎn)F處。若AB=6,BE:EC=4:1,則線段DE的長(zhǎng)為_______.
【答案】
【解析】由矩形ABCD,得∠B=∠C=90°,CD=AB,AD=BC,AD∥BC.
由△DEC沿線段DE翻折,點(diǎn)C恰好落在線段AE上的點(diǎn)F處,得△DFE≌△DCE,
∴DF=DC,∠DFE=∠C=90°,
∴DF=AB,∠AFD=90°,
∴∠AFD=∠B,
由AD∥BC得∠DAF=∠AEB,
∴在△ABE與△DFA中,
∵∠AEB=∠DAF,∠B=∠AFD,AB=DF,
∴△ABE≌△DFA(AAS).
∵由BE:EC=4:1,
∴設(shè)CE=x,BE=4x,則AD=BC=5x,
由△ABE≌△DFA,得AF=BE=4x,
在Rt△ADF中,由勾股定理可得DF=3x,
又∵DF=CD=AB=6,
∴x=2,
在Rt△DCE中,
.
故答案是: .
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】多邊形的內(nèi)角和與某一個(gè)外角的度數(shù)總和為1 350°.
(1)求此多邊形的邊數(shù);
(2)此多邊形必有一內(nèi)角為多少度?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn)A(a,2013)與點(diǎn)B(2014,b)關(guān)于x軸對(duì)稱(chēng),則a+b的值為( )
A. ﹣1 B. 1 C. 2 D. 3
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】身高1.80米的人站在平面鏡前2米處,它在鏡子中的像高______米,人與像之間距離為_______米;如果他向前走0.2米,人與像之間距離為_________米.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(本題12分)已知拋物線交x軸于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左邊),頂點(diǎn)為C.
(1)求證:不論a為何實(shí)數(shù)值,頂點(diǎn)C總在同一條直線上;
(2)若,求此時(shí)拋物線的解析式;
(3)在(2)的條件下,將拋物線沿y軸負(fù)方向平移2個(gè)單位得到拋物線,直線
交拋物線于E、F兩點(diǎn)(點(diǎn)E在點(diǎn)F的左邊),交拋物線的對(duì)稱(chēng)軸于點(diǎn)N, ,若MN=ME,求的值。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知頂點(diǎn)為(﹣3,﹣6)的拋物線y=ax2+bx+c經(jīng)過(guò)點(diǎn)(﹣1,﹣4),則下列結(jié)論中錯(cuò)誤的是( 。
A. b2>4ac
B. ax2+bx+c≥﹣6
C. 若點(diǎn)(﹣2,m),(﹣5,n)在拋物線上,則m>n
D. 關(guān)于x的一元二次方程ax2+bx+c=﹣4的兩根為﹣5和﹣1
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com