【題目】為了解學(xué)生的藝術(shù)特長發(fā)展情況,某校音樂組決定圍繞“在舞蹈、樂器、聲樂、戲曲、其它活動項目中,你最喜歡哪一項活動(每人只限一項)”的問題,在全校范圍內(nèi)隨機抽取部分學(xué)生進行問卷調(diào)查,并將調(diào)查結(jié)果繪制成如下兩幅不完整的統(tǒng)計圖.
請你根據(jù)統(tǒng)計圖解答下列問題:
(1)在這次調(diào)查中一共抽查了名學(xué)生,其中,喜歡“舞蹈”活動項目的人數(shù)占抽查總?cè)藬?shù)的百分比為 , 喜歡“戲曲”活動項目的人數(shù)是人;
(2)若在“舞蹈、樂器、聲樂、戲曲”活動項目任選兩項設(shè)立課外興趣小組,請用列表或畫樹狀圖的方法求恰好選中“舞蹈、聲樂”這兩項活動的概率.

【答案】
(1)50;24%;4
(2)解:(用樹狀圖)設(shè)舞蹈、樂器、聲樂、戲曲的序號依次是①②③④,

故恰好選中“舞蹈、聲樂”兩項活動的概率是

(用列表法)

舞蹈

樂器

聲樂

戲曲

舞蹈

舞蹈、樂器

舞蹈、聲樂

舞蹈、戲曲

樂器

樂器、舞蹈

樂器、聲樂

樂器、戲曲

聲樂

聲樂、舞蹈

聲樂、樂器

聲樂、戲曲

戲曲

戲曲、舞蹈

戲曲、樂器

戲曲、聲樂

故恰好選中“舞蹈、聲樂”兩項活動的概率是


【解析】解:(1)根據(jù)喜歡聲樂的人數(shù)為8人,得出總?cè)藬?shù)=8÷16%=50, 喜歡“舞蹈”活動項目的人數(shù)占抽查總?cè)藬?shù)的百分比為: ×100%=24%,
喜歡“戲曲”活動項目的人數(shù)是:50﹣12﹣16﹣8﹣10=4,故答案為:50,24%,4;
(1)總?cè)藬?shù)=參加某項的人數(shù)÷所占比例,用喜歡“舞蹈”活動項目的人數(shù)除以總?cè)藬?shù)再乘100%,即可求出喜歡“舞蹈”活動項目的人數(shù)占抽查總?cè)藬?shù)的百分比,用總?cè)藬?shù)減去其他4個小組的人數(shù)求出喜歡“戲曲”活動項目的人數(shù);(2)根據(jù)頻率的計算方法,用選中“舞蹈、聲樂”這兩項活動的數(shù)除以總數(shù)計算即可解答.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將ABC的各邊都延長一倍至A′、B′、C′,連接這些點,得到一個新的三角形A′B′C′,若ABC的面積為1,則A′B′C′的面積是(

A. 4 B. 5 C. 6 D. 7

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】拋物線y= +x+m的頂點在直線y=x+3上,過點F(﹣2,2)的直線交該拋物線于點M、N兩點(點M在點N的左邊),MA⊥x軸于點A,NB⊥x軸于點B.

(1)先通過配方求拋物線的頂點坐標(biāo)(坐標(biāo)可用含m的代數(shù)式表示),再求m的值;
(2)設(shè)點N的橫坐標(biāo)為a,試用含a的代數(shù)式表示點N的縱坐標(biāo),并說明NF=NB;
(3)若射線NM交x軸于點P,且PAPB= ,求點M的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知一個正數(shù)x的平方根是3a-1a-7,求ax的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】規(guī)定兩數(shù)a,b之間的一種運算,記作(a,b):如果,那么(a,b)=c

例如:因為23=8,所以(2,8)=3.

(1)根據(jù)上述規(guī)定,填空:

(3,27)=_______,(5,1)=_______,(2, )=_______.

(2)小明在研究這種運算時發(fā)現(xiàn)一個現(xiàn)象:(3n,4n)=(3,4)小明給出了如下的證明:

設(shè)(3n,4n)=x,則(3nx=4n,即(3xn=4n

所以3x=4,即(3,4)=x,

所以(3n,4n)=(3,4).

請你嘗試運用上述這種方法說明下面這個等式成立的理由:(4,5)+(4,6)=(4,30)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】平面上3條互不重合的直線交于一點,其中對頂角有( 。

A.4B.5C.6D.7

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】積極響應(yīng)政府提出的“綠色發(fā)展·碳出行”號召,某社區(qū)決定購置一批共享單車,經(jīng)市場調(diào)查知,購買3量男式單車與4輛女式單車費用相同,購買5輛男式單車與4輛女式單車共需16000元.

(1)求男式單車和女式單車的單價;

(2)該社區(qū)要求男式單比女式單車多4輛,兩種單車至少需要22輛,購置兩種單車的費用不超過50000元,該社區(qū)有幾種購置方案?怎樣購置才能使所需總費用最低,最低費用是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形ABCD中,∠ABC=90°,AC=AD,M,N分別為AC,AD的中點,

且∠ABM=∠BAM,連接BM,MN,BN.

(1)求證:BM=MN;

(2)∠BAD=60°,AC平分∠BAD,AC=2,求BN的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小杰到學(xué)校食堂買飯,看到A、B兩窗口前面排隊的人一樣多(設(shè)為a人,a8,就站在A窗口隊伍的后面,過了2分鐘,他發(fā)現(xiàn)A窗口每分鐘有4人買了飯離開隊伍,B窗口每分鐘有6人買了飯離開隊伍,且B窗口隊伍后面每分鐘增加5人.

1)此時,若小杰繼續(xù)在A窗口排隊,則他到達窗口所花的時間是多少?(用含a的代數(shù)式表示)

2)此時,若小杰迅速從A窗口隊伍轉(zhuǎn)移到B窗口后面重新排隊,且到達B窗口所花的時間比繼續(xù)在A窗口排隊到達A窗口所花的時間少,求a的取值范圍.(不考慮其它因素)

查看答案和解析>>

同步練習(xí)冊答案