如圖菱形ABCD的邊長(zhǎng)為2,對(duì)角線BD=2,E、F分別是AD、CD上的兩個(gè)動(dòng)點(diǎn),且滿足AE+CF=2.
(1)求證:△BDE≌△BCF;
(2)判斷△BEF的形狀,并說(shuō)明理由.同時(shí)指出△BCF是由△BDE經(jīng)過(guò)如何變換得到?

【答案】分析:(1)先判定△ABD與△BCD都是等邊三角形,根據(jù)等邊三角形的性質(zhì)可得∠BDE=∠C=60°,再求出DE=CF,然后利用“邊邊角”證明兩三角形全等;
(2)根據(jù)全等三角形對(duì)應(yīng)邊相等可得BE=CF,全等三角形對(duì)應(yīng)角相等可得∠DBE=∠CBF,然后求出∠EBF=60°,再根據(jù)等邊三角形的判定得解,利用旋轉(zhuǎn)變換解答.
解答:(1)證明:∵菱形ABCD的邊長(zhǎng)為2,對(duì)角線BD=2,
∴AB=AD=BD=2,BC=CD=BD=2,
∴△ABD與△BCD都是等邊三角形,
∴∠BDE=∠C=60°,
∵AE+CF=2,
∴CF=2-AE,
又∵DE=AD-AE=2-AE,
∴DE=CF,
在△BDE和△BCF中,,
∴△BDE≌△BCF(SAS);

(2)解:△BEF是等邊三角形.理由如下:
由(1)可知△BDE≌△BCF,
∴BE=BF,∠DBE=∠CBF,
∴∠EBF=∠DBE+∠DBF=∠CBF+∠DBF=∠DBC=60°,
∴△BEF是等邊三角形,
由圖可知,△BDE繞點(diǎn)B順時(shí)針旋轉(zhuǎn)60°即可得到△BCF.
點(diǎn)評(píng):本題考查了菱形的四條邊都相等的性質(zhì),等邊三角形的判定與性質(zhì),全等三角形的判定與性質(zhì),以及旋轉(zhuǎn)變換,根據(jù)菱形的對(duì)角線BD與菱形的邊相等判定出等邊三角形是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2011•泰寧縣質(zhì)檢)如圖菱形ABCD的邊長(zhǎng)為2,對(duì)角線BD=2,E、F分別是AD、CD上的兩個(gè)動(dòng)點(diǎn),且滿足AE+CF=2.
(1)求證:△BDE≌△BCF;
(2)判斷△BEF的形狀,并說(shuō)明理由.同時(shí)指出△BCF是由△BDE經(jīng)過(guò)如何變換得到?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(8分).已知,如圖菱形ABCD的邊長(zhǎng)為13cm,對(duì)角線BD長(zhǎng)為10cm,
求(1)對(duì)角線AC的長(zhǎng)度
(2)菱形ABCD的面積

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2011-2012年江蘇省大豐市第七中學(xué)九年級(jí)第一學(xué)期期中考試數(shù)學(xué)卷 題型:解答題

(8分).已知,如圖菱形ABCD的邊長(zhǎng)為13cm,對(duì)角線BD長(zhǎng)為10cm,
求(1)對(duì)角線AC的長(zhǎng)度
(2)菱形ABCD的面積

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖菱形ABCD的邊長(zhǎng)為2,對(duì)角線BD=2,E、F分別是AD、CD上的兩個(gè)動(dòng)點(diǎn),且滿足AE+CF=2.
(1)求證:△BDE≌△BCF;
(2)判斷△BEF的形狀,并說(shuō)明理由.同時(shí)指出△BCF是由△BDE經(jīng)過(guò)如何變換得到?

查看答案和解析>>

同步練習(xí)冊(cè)答案