精英家教網 > 初中數學 > 題目詳情
已知拋物線y=x2-2x+c與x軸交于A.B兩點,與y軸交于C點,拋物線的頂點為D點,點A的坐標為(-1,0).
(1)求D點的坐標;
(2)如圖1,連接AC,BD并延長交于點E,求∠E的度數;
(3)如圖2,已知點P(-4,0),點Q在x軸下方的拋物線上,直線PQ交線段AC于點M,當∠PMA=∠E時,求點Q的坐標.

【答案】分析:(1)將點A的坐標代入到拋物線的解析式求得c值,然后配方后即可確定頂點D的坐標;
(2)連接CD、CB,過點D作DF⊥y軸于點F,首先求得點C的坐標,然后證得△DCB∽△AOC得到∠CBD=∠OCA,根據∠ACB=∠CBD+∠E=∠OCA+∠OCB,得到∠E=∠OCB=45°;
(3)設直線PQ交y軸于N點,交BD于H點,作DG⊥x軸于G點,增大△DGB∽△PON后利用相似三角形的性質求得ON的長,從而求得點N的坐標,進而求得直線PQ的解析式,
設Q(m,n),根據點Q在y=x2-2x-3上,得到-m-2=m2-2m-3,求得m、n的值后即可求得點Q的坐標.
解答:解:(1)把x=-1,y=0代入y=x2-2x+c得:1+2+c=0
∴c=-3
∴y=x2-2x-3=y=(x-1)2-4
∴頂點坐標為(1,-4);

(2)如圖1,連接CD、CB,過點D作DF⊥y軸于點F,
由x2-2x-3=0得x=-1或x=3
∴B(3,0)
當x=0時,y=x2-2x-3=-3
∴C(0,-3)
∴OB=OC=3
∵∠BOC=90°,
∴∠OCB=45°,
BC=3
又∵DF=CF=1,∠CFD=90°,
∴∠FCD=45°,CD=,
∴∠BCD=180°-∠OCB-∠FCD=90°.
∴∠BCD=∠COA
又∵
∴△DCB∽△AOC,
∴∠CBD=∠OCA
又∵∠ACB=∠CBD+∠E=∠OCA+∠OCB
∴∠E=∠OCB=45°,

(3)如圖2,設直線PQ交y軸于N點,交BD于H點,作DG⊥x軸于G點
∵∠PMA=45°,
∴∠EMH=45°,
∴∠MHE=90°,
∴∠PHB=90°,
∴∠DBG+∠OPN=90°
又∴∠ONP+∠OPN=90°,
∴∠DBG=∠ONP
又∵∠DGB=∠PON=90°,
∴△DGB=∠PON=90°,
∴△DGB∽△PON

即:=
∴ON=2,
∴N(0,-2)
設直線PQ的解析式為y=kx+b

解得:
∴y=-x-2
設Q(m,n)且n<0,
∴n=-m-2
又∵Q(m,n)在y=x2-2x-3上,
∴n=m2-2m-3
∴-m-2=m2-2m-3
解得:m=2或m=-
∴n=-3或n=-
∴點Q的坐標為(2,-3)或(-,-).
點評:本題考查了二次函數的綜合知識,難度較大,題目中滲透了許多的知識點,特別是二次函數與相似三角形的結合,更是一個難點,同時也是中考中的常考題型之一.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

已知拋物線y=x2-8x+c的頂點在x軸上,則c等于(  )
A、4B、8C、-4D、16

查看答案和解析>>

科目:初中數學 來源: 題型:

已知拋物線y=x2+(1-2a)x+a2(a≠0)與x軸交于兩點A(x1,0)、B(x2,0)(x1≠x2).
(1)求a的取值范圍,并證明A、B兩點都在原點O的左側;
(2)若拋物線與y軸交于點C,且OA+OB=OC-2,求a的值.

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,已知拋物線y=-x2+bx+c與x軸負半軸交于點A,與y軸正半軸交于點B,且OA=OB.
精英家教網(1)求b+c的值;
(2)若點C在拋物線上,且四邊形OABC是平行四邊形,試求拋物線的解析式;
(3)在(2)的條件下,作∠OBC的角平分線,與拋物線交于點P,求點P的坐標.

查看答案和解析>>

科目:初中數學 來源: 題型:

(2012•虹口區(qū)一模)如圖,在平面直角坐標系xOy中,已知拋物線y=x2+bx+c經過A(0,3),B(1,0)兩點,頂點為M.
(1)求b、c的值;
(2)將△OAB繞點B順時針旋轉90°后,點A落到點C的位置,該拋物線沿y軸上下平移后經過點C,求平移后所得拋物線的表達式;
(3)設(2)中平移后所得的拋物線與y軸的交點為A1,頂點為M1,若點P在平移后的拋物線上,且滿足△PMM1的面積是△PAA1面積的3倍,求點P的坐標.

查看答案和解析>>

科目:初中數學 來源: 題型:

(2012•黔南州)已知拋物線y=x2-x-1與x軸的交點為(m,0),則代數式m2-m+2011的值為(  )

查看答案和解析>>

同步練習冊答案