【題目】下面是小星同學(xué)設(shè)計(jì)的過直線外一點(diǎn)作已知直線的平行線的尺規(guī)作圖過程: 已知:如圖,直線 l 和直線 l 外一點(diǎn) A

求作:直線 AP,使得 APl

作法:如圖

①在直線 l 上任取一點(diǎn) BAB l 不垂直),以點(diǎn) A 為圓心,AB 為半徑作圓,與直線 l

交于點(diǎn) C

②連接 AC,AB,延長 BA 到點(diǎn) D;

③作∠DAC的平分線AP

所以直線AP就是所求作的直線,

根據(jù)小星同學(xué)設(shè)計(jì)的尺規(guī)作圖過程,完成下面的證明證明:

ABAC,

∴∠ABC=∠ACB_________(填推理的依據(jù))

∵∠DAC 是△ABC 的外角,∴∠DAC=∠ABC+ACB

∴∠DAC2ABC

AP 平分∠DAC,

∴∠DAC2DAP

∴∠DAP=∠ABC

APl_________(填推理的依據(jù))

【答案】(等邊對等角); (同位角相等,兩直線平行).

【解析】

首先要根據(jù)角平分線的尺規(guī)作圖即,再分別根據(jù)等腰三角形的性質(zhì)、三角形外角的性質(zhì)和平行線的判定求解可得.

解:(1)如圖所示,直線即為所求.

(2)證明:,

(等邊對等角),

的外角,

.

,

平分,

,

,

(同位角相等,兩直線平行),

故答案為:(等邊對等角);(同位角相等,兩直線平行).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在某一路段,規(guī)定汽車限速行駛,交通警察在此限速路段的道路上設(shè)置了監(jiān)測區(qū),其中點(diǎn)C、D為監(jiān)測點(diǎn),已知點(diǎn)C、D、B在同一直線上,且ACBC,CD400米,tanADC2,∠ABC35°

1)求道路AB段的長(結(jié)果精確到1米)

2)如果道路AB的限速為60千米/時(shí),一輛汽車通過AB段的時(shí)間為90秒,請你判斷該車是否是超速,并說明理由;參考數(shù)據(jù):sin35°≈0.5736,cos35°≈0.8192,tan35°≈0.7002

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,有AB兩個(gè)轉(zhuǎn)盤,其中轉(zhuǎn)盤A被分成4等份,轉(zhuǎn)盤B被分成3等份,并在每一份內(nèi)標(biāo)上數(shù)字.現(xiàn)甲、乙兩人同時(shí)各轉(zhuǎn)動(dòng)其中一個(gè)轉(zhuǎn)盤,轉(zhuǎn)盤停止后(當(dāng)指針指在邊界線上時(shí)視為無效,重轉(zhuǎn)),若將A轉(zhuǎn)盤指針指向的數(shù)字記為xB轉(zhuǎn)盤指針指向的數(shù)字記為y,從而確定點(diǎn)P的坐標(biāo)為Px,y).

1)請用列表或畫樹狀圖的方法寫出所有可能得到的點(diǎn)P的坐標(biāo);

2)計(jì)算點(diǎn)P在函數(shù)y=圖象上的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)yax2﹣(2a+1x+ca0)的圖象經(jīng)過坐標(biāo)原點(diǎn)O,一次函數(shù)y=﹣x+4x軸、y軸分別交于點(diǎn)A、B

1c ,點(diǎn)A的坐標(biāo)為 ;

2)若二次函數(shù)yax2﹣(2a+1x+c的圖象經(jīng)過點(diǎn)A,求a的值;

3)若二次函數(shù)yax2﹣(2a+1x+c的圖象與AOB只有一個(gè)公共點(diǎn),直接寫出a的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】拋物線y=﹣x2+bx+c經(jīng)過點(diǎn)A、B、C,已知A(﹣1,0),C(0,3).

(1)求拋物線的解析式;

(2)如圖1,P為線段BC上一點(diǎn),過點(diǎn)Py軸平行線,交拋物線于點(diǎn)D,當(dāng)△BDC的面積最大時(shí),求點(diǎn)P的坐標(biāo);

(3)如圖2,拋物線頂點(diǎn)為E,EF⊥x軸于F點(diǎn),M(m,0)是x軸上一動(dòng)點(diǎn),N是線段EF上一點(diǎn),若∠MNC=90°,請指出實(shí)數(shù)m的變化范圍,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】對于直角坐標(biāo)系 xOy 中的點(diǎn)P和⊙C,給出如下定義:若⊙C上存在兩個(gè)點(diǎn)A,B,使得點(diǎn)P在射線BC上,且∠APBACB<∠ACB180°),則稱P為⊙C的依附點(diǎn).

1)當(dāng)⊙O的半徑為1時(shí)

①已知點(diǎn)D(﹣1,0),E0,﹣2),F2.5,0),在點(diǎn)D,E,F中,⊙O的依附點(diǎn)是___;

點(diǎn)T在直線y=x上,若T⊙O的依附點(diǎn),求點(diǎn)T的橫坐標(biāo)t的取值范圍;

2)⊙C的圓心在x軸上,半徑為1,直線 y=﹣2x+2x軸、y 軸分別交于點(diǎn)MN,若線段MN上的所有點(diǎn)都是⊙C 的依附點(diǎn),請求出圓心C的橫坐標(biāo)n的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀下列材料,解決所提的問題:

勾股定理a+b=c本身就是一個(gè)關(guān)于ab,c的方程,我們知道這個(gè)方程有無數(shù)組解,滿足該方程的正整數(shù)解(a,b,c)通常叫做勾股數(shù)組.關(guān)于勾股數(shù)組的研究我國歷史上有非常輝煌的成就,根據(jù)我國古代數(shù)學(xué)書《周髀算經(jīng)》記載,在約公元前1100年,人們就已經(jīng)知道“勾廣三、股修四、徑隅五”(古人把較短的直角邊稱為勾,較長的直角邊稱為股,而斜邊則為弦),即知道了勾股數(shù)組(34,5).類似地,還可以得到下列勾股數(shù)組:(3,4,5),(5,12,13),(7,2425),(940,41),…等等,這些數(shù)組也叫做畢達(dá)哥拉斯勾股數(shù)組.

上述勾股數(shù)組的規(guī)律,可以用下面表格直觀表示:

觀察分析上述勾股數(shù)組,可以看出它們具有如下特點(diǎn):

特點(diǎn)1:最小的勾股數(shù)的平方等于另兩個(gè)勾股數(shù)的和;

特點(diǎn)2____________________________________

學(xué)習(xí)任務(wù):

1)請你再寫出上述勾股數(shù)組的一個(gè)特點(diǎn):________________

2)如果n表示比1大的奇數(shù),則上述勾股數(shù)組可以表示為(n,______,______

3)請你證明(2)的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖:梯形ABCD中,AD∥BC,∠ABC=90°,AD=9,BC=12,AB=6,在線段BC上任取一點(diǎn)P,連接DP,作射線PE⊥DP,PE與直線AB交于點(diǎn)E.

(1)試確定當(dāng)CP=3時(shí),點(diǎn)E的位置;

(2)若設(shè)CP=x,BE=y,試寫出y關(guān)于自變量x的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知AB是⊙O的直徑,BC是弦,∠ABC=30°,過圓心O作OD⊥BC,垂足為E,交弧BC于點(diǎn)D,連接DC,則∠DCB的度數(shù)為(  )

A. 30° B. 45° C. 50° D. 60°

查看答案和解析>>

同步練習(xí)冊答案