【題目】據(jù)報(bào)道:截止到20131231日我國微信用戶規(guī)模已達(dá)到6.以下是根據(jù)相關(guān)數(shù)據(jù)制作的統(tǒng)計(jì)圖表的一部分:

請根據(jù)以上信息,回答以下問題:

1)從2012年到2013年微信的日人均使用時長增加了 分鐘;

2)截止到20131231日,在我國6億微信用戶中偶爾使用微信用戶約為 億(結(jié)果精確到0.1.

【答案】16.7;(22.5

【解析】

1)用2013年的微信使用時長減去2012年的微信使用時長即可確定答案;

2)用單位1減去其他所占的百分比即可確定偶爾使用的所占的百分比,用總量乘以經(jīng)常偶爾使用的所占的百分比即可確定偶爾使用的用戶的數(shù)量;

解:(12012年到2013年微信的人均使用時長增加了9.7-3.0=6.7分鐘;

2)偶爾使用所占的百分比為1-13%-7.4%-13%-24.2%=42.4%;

我國6億微信用戶中,經(jīng)常使用戶約為6×42.4%2.5.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在菱形ABCD中,GBD上一點(diǎn),連接CG并延長交BA的延長線于點(diǎn)F,交AD于點(diǎn)E,連接AG.

(1)求證:AGCG;

(2)求證:AG2GE·GF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,將一副直角三角板放在同一條直線AB上,其中∠ONM30°,∠OCD45°

1)觀察猜想

將圖1中的三角尺OCD沿AB的方向平移至圖②的位置,使得點(diǎn)O與點(diǎn)N重合,CDMN相交于點(diǎn)E,則∠CEN  度.

2)操作探究

將圖1中的三角尺OCD繞點(diǎn)O按順時針方向旋轉(zhuǎn),使一邊OD在∠MON的內(nèi)部,如圖3,且OD恰好平分∠MON,CDNM相交于點(diǎn)E,求∠CEN的度數(shù);

3)深化拓展

將圖1中的三角尺OCD繞點(diǎn)O按沿順時針方向旋轉(zhuǎn)一周,在旋轉(zhuǎn)的過程中,若邊CD恰好與邊MN平行,請你求出此時旋轉(zhuǎn)的角度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】根據(jù)圖中給出的伯,解容下列問題

(I)放入一個小球水面升高____cm,放入一個大球水面升高_____cm

(2)如果放入10個球,使水面上升到50cm,應(yīng)放入大球、小像各多少個?

(3)現(xiàn)放入干個球,使水面升高2lcm,且小球個數(shù)為偶數(shù)個,問有幾種可能,請一一列出(寫出結(jié)果即可).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)的邊,過點(diǎn)的平行線,如果,那么的度數(shù)為__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,射線分別和直線交于點(diǎn),射線分別和直線交于點(diǎn).點(diǎn)(點(diǎn)與三點(diǎn)不重合).連接.請你根據(jù)題意畫出圖形并用等式直接寫出、之間的數(shù)量關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某企業(yè)設(shè)計(jì)了一款工藝品,每件的成本是50元,為了合理定價,投放市場進(jìn)行試銷.據(jù)市場調(diào)查,銷售單價是100元時,每天的銷售量是50件,而銷售單價每降低1元,每天就可多售出5件,但要求銷售單價不得低于成本

1求每天的銷售利潤y(元)與銷售單價x(元)之間的函數(shù)關(guān)系式;

2)求出銷售單價為多少元時,每天的銷售利潤最大?最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為提高節(jié)水意識,小明隨機(jī)統(tǒng)計(jì)了自己家7天的用水量,并分析了第3天的用水情況,將得到的數(shù)據(jù)進(jìn)行整理后,繪制成如圖所示的統(tǒng)計(jì)圖.(單位:升)

每天用水折線統(tǒng)計(jì)圖 3天用水情況條形統(tǒng)計(jì)圖

1)填空:這7天內(nèi)小明家里每天用水量的平均數(shù)為 升、中位數(shù)為 升;

2)求第3天小明家淋浴的水占這一天總用水量的百分比.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線交X軸于點(diǎn)A、B(A左B右),交Y軸于點(diǎn)C,

=6,點(diǎn)P為第一象限內(nèi)拋物線上的一點(diǎn).

(1)求拋物線的解析式;

(2)若∠PCB=45°,求點(diǎn)P的坐標(biāo);

(3)點(diǎn)Q為第四象限內(nèi)拋物線上一點(diǎn),點(diǎn)Q的橫坐標(biāo)比點(diǎn)P的橫坐標(biāo)大1,連接PC、

AQ,當(dāng)PC=AQ時,求點(diǎn)P的坐標(biāo)以及ΔPCQ的面積.

查看答案和解析>>

同步練習(xí)冊答案