如圖是一張直角三角形的紙片,兩直角邊AC=6cm、BC=8cm,現(xiàn)將△ABC折疊,使點(diǎn)B與點(diǎn)A重合,折痕為DE,則BE的長為( )

A.4 cm
B.5 cm
C.6 cm
D.10 cm
【答案】分析:先根據(jù)勾股定理求出AB的長,再由圖形折疊的性質(zhì)可知,AE=BE,故可得出結(jié)論.
解答:解:∵△ABC是直角三角形,兩直角邊AC=6cm、BC=8cm,
∴AB===10,
∵△ADE由△BDE折疊而成,
∴AE=BE=AB=×10=5cm.
故選B.
點(diǎn)評:本題考查的是翻折變換,熟知折疊是一種對稱變換,它屬于軸對稱,折疊前后圖形的形狀和大小不變,位置變化,對應(yīng)邊和對應(yīng)角相等是解答此題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖是一張直角三角形的紙片,兩直角邊AC=6cm、BC=8cm,現(xiàn)將△ABC折疊,使點(diǎn)B與點(diǎn)A重合,折痕為DE,則BE的長為( 。
A、4cmB、5cmC、6cmD、10cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖是一張直角三角形的紙片,兩直角邊AC=6cm、BC=8cm,現(xiàn)將△ABC折疊,使點(diǎn)B與點(diǎn)A重合,折痕為DE,則BE的長為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•普陀區(qū)一模)如圖是一張直角三角形的紙片,直角邊AC=6cm,sinB=
3
5
,現(xiàn)將△ABC折疊,使點(diǎn)B與點(diǎn)A重合,折痕為DE,那么DE的長等于
15
4
cm
15
4
cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•香坊區(qū)一模)如圖是一張直角三角形的紙片.兩直角邊AC=6cm,BC=8cm將△ABC折疊,使點(diǎn)B與點(diǎn)A重合,折痕為DE,則AD的長為(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖是一張直角三角形紙片,兩直角邊AC=6cm,BC=8cm,將△ABC折疊,使點(diǎn)B與點(diǎn)A重合,折痕為DE,則DE的長為
15
4
cm
15
4
cm

查看答案和解析>>

同步練習(xí)冊答案