15、某正方形邊長為acm,若把這個正方形的邊長都縮短3cm,則面積減少了
(6a-9)
cm2
分析:先求出兩正方形的面積,然后相減,再逆運用平方差公式進(jìn)行計算即可.
解答:解:根據(jù)題意得,a2-(a-3)2
=(a+a-3)(a-a+3)
=(6a-9)cm2
故答案為:(6a-9).
點評:本題考查了平方差公式,熟記公式并靈活運用是解題的關(guān)鍵,平方差公式:(a+b)(a-b)=a2-b2
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)系中的正方形ABCD的邊長為acm(a>2),B與坐標(biāo)原點重合,邊AB在y軸正半軸,動點P從點B出發(fā),以2cm/s的速度沿B→C→D方向,向點D運動;動點Q從點A出發(fā),以1cm/s的速度沿A→B方向,向點B運動,設(shè)P,Q兩點同時出發(fā),運動時間為ts.
(1)若t=1時,△BPQ的面積為3cm2,則a的值為多少?
(2)在(1)的條件下,以點P為圓心,作⊙P,使得⊙P與對角線BD相切如圖(b)所示,問:當(dāng)點P在CD上動動時,是否存在這樣的t,使得⊙P恰好經(jīng)過正方形ABCD的某一邊的中點?若存在,請寫出符合條件的t的值并直接寫出直線PQ解析式(其中一種情形需有計算過程,其余的只要直接寫出答案);若不存在,請說明理由.
(3)在(1)的條件下,且t<
32
,點P在BC上運動時,△PQD是以PD為一腰的等腰三角形,在直線BD上找一點E,在x軸上找一點F,是否存在以E,F(xiàn),P,Q為頂點的平行四邊形?若存在,求出E,F(xiàn)兩點坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

某正方形的邊長為acm,若把這個正方形的邊長減少1cm,則面積減少了
2a-1
2a-1
cm2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,在平面直角坐標(biāo)系中的正方形ABCD的邊長為acm(a>2),B與坐標(biāo)原點重合,邊AB在y軸正半軸,動點P從點B出發(fā),以2cm/s的速度沿B→C→D方向,向點D運動;動點Q從點A出發(fā),以1cm/s的速度沿A→B方向,向點B運動,設(shè)P,Q兩點同時出發(fā),運動時間為ts.
(1)若t=1時,△BPQ的面積為3cm2,則a的值為多少?
(2)在(1)的條件下,以點P為圓心,作⊙P,使得⊙P與對角線BD相切如圖(b)所示,問:當(dāng)點P在CD上動動時,是否存在這樣的t,使得⊙P恰好經(jīng)過正方形ABCD的某一邊的中點?若存在,請寫出符合條件的t的值并直接寫出直線PQ解析式(其中一種情形需有計算過程,其余的只要直接寫出答案);若不存在,請說明理由.
(3)在(1)的條件下,且數(shù)學(xué)公式,點P在BC上運動時,△PQD是以PD為一腰的等腰三角形,在直線BD上找一點E,在x軸上找一點F,是否存在以E,F(xiàn),P,Q為頂點的平行四邊形?若存在,求出E,F(xiàn)兩點坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011年黑龍江省哈爾濱市中考數(shù)學(xué)模擬試卷(二)(解析版) 題型:解答題

如圖,在平面直角坐標(biāo)系中的正方形ABCD的邊長為acm(a>2),B與坐標(biāo)原點重合,邊AB在y軸正半軸,動點P從點B出發(fā),以2cm/s的速度沿B→C→D方向,向點D運動;動點Q從點A出發(fā),以1cm/s的速度沿A→B方向,向點B運動,設(shè)P,Q兩點同時出發(fā),運動時間為ts.
(1)若t=1時,△BPQ的面積為3cm2,則a的值為多少?
(2)在(1)的條件下,以點P為圓心,作⊙P,使得⊙P與對角線BD相切如圖(b)所示,問:當(dāng)點P在CD上動動時,是否存在這樣的t,使得⊙P恰好經(jīng)過正方形ABCD的某一邊的中點?若存在,請寫出符合條件的t的值并直接寫出直線PQ解析式(其中一種情形需有計算過程,其余的只要直接寫出答案);若不存在,請說明理由.
(3)在(1)的條件下,且,點P在BC上運動時,△PQD是以PD為一腰的等腰三角形,在直線BD上找一點E,在x軸上找一點F,是否存在以E,F(xiàn),P,Q為頂點的平行四邊形?若存在,求出E,F(xiàn)兩點坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案