如圖,在矩形ABCD中,AD=AB,∠BAD的平分線交BC于點(diǎn)E,DH⊥AE于點(diǎn)H,連接BH并延長交CD于點(diǎn)F,連接DE交BF于點(diǎn)O,下列結(jié)論:
①∠AED=∠CED;②OE=OD;③BH=HF;④BC﹣CF=2HE;⑤AB=HF,
其中正確的有( 。
A.2個(gè) B.3個(gè) C.4個(gè) D.5個(gè)
C
【解析】∵在矩形ABCD中,AE平分∠BAD,∴∠BAE=∠DAE=45°,∴△ABE是等腰直角三角形,∴AE=AB,∵AD=AB,∴AE=AD,又∠ABE=∠AHD=90°∴△ABE≌△AHD(AAS),∴BE=DH,∴AB=BE=AH=HD,∴∠ADE=∠AED=(180°﹣45°)=67.5°,
∴∠CED=180°﹣45°﹣67.5°=67.5°,∴∠AED=∠CED,故①正確;
∵∠AHB=(180°﹣45°)=67.5°,∠OHE=∠AHB(對頂角相等),∴∠OHE=∠AED,
∴OE=OH,∵∠DOH=90°﹣67.5°=22.5°,∠ODH=67.5°﹣45°=22.5°,∴∠DOH=∠ODH,∴OH=OD,∴OE=OD=OH,故②正確;
∵∠EBH=90°﹣67.5°=22.5°,∴∠EBH=∠OHD,又BE=DH,∠AEB=∠HDF=45°
∴△BEH≌△HDF(ASA),∴BH=HF,HE=DF,故③正確;
由上述①、②、③可得CD=BE、DF=EH=CE,CF=CD-DF,∴BC-CF=(CD+HE)-(CD-HE)=2HE,所以④正確;
∵AB=AH,∠BAE=45°,∴△ABH不是等邊三角形,∴AB≠BH,∴即AB≠HF,故⑤錯(cuò)誤;
綜上所述,結(jié)論正確的是①②③④共4個(gè).
故選C.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
下列事件中,必然事件是( )
A.?dāng)S一枚硬幣,正面朝上;
B.是實(shí)數(shù),;
C.某運(yùn)動(dòng)員跳高的最好成績是20.1米 ;
D.從車間剛生產(chǎn)的產(chǎn)品中任意抽取一件,是次品。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,將邊長為6的正方形ABCD折疊,使點(diǎn)D落在AB邊的中點(diǎn)E處,折痕為FH,點(diǎn)C落在點(diǎn)Q處,EQ與BC交于點(diǎn)G,則△EBG的周長是 cm.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,在平面直角坐標(biāo)系中,正方形ABCD的頂點(diǎn)A在y軸正半軸上,頂點(diǎn)B在x軸正半軸上,OA、OB的長分別是一元二次方程x2﹣7x+12=0的兩個(gè)根(OA>OB).
(1)求點(diǎn)D的坐標(biāo).
(2)求直線BC的解析式.
(3)在直線BC上是否存在點(diǎn)P,使△PCD為等腰三角形?若存在,請直接寫出點(diǎn)P的坐標(biāo);若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,扇形AOB中,半徑OA=2,∠AOB=120°,C是的中點(diǎn),連接AC、BC,則圖中陰影部分面積是( 。
A.﹣2 B.﹣2 C.﹣ D.﹣
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
服裝店銷售某款服裝,一件服裝的標(biāo)價(jià)為300元,若按標(biāo)價(jià)的八折銷售,仍可獲利60元,則這款服裝每件的標(biāo)價(jià)比進(jìn)價(jià)多 元.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com