(2005•無(wú)錫)已知正方形ABCD的邊長(zhǎng)AB=k(k是正整數(shù)),正△PAE的頂點(diǎn)P在正方形內(nèi),頂點(diǎn)E在邊AB上,且AE=1.將△PAE在正方形內(nèi)按圖1中所示的方式,沿著正方形的邊AB、BC、CD、DA、AB、…連續(xù)地翻轉(zhuǎn)n次,使頂點(diǎn)P第一次回到原來(lái)的起始位置.

(1)如果我們把正方形ABCD的邊展開(kāi)在一直線上,那么這一翻轉(zhuǎn)過(guò)程可以看作是△PAE在直線上作連續(xù)的翻轉(zhuǎn)運(yùn)動(dòng).圖2是k=1時(shí),△PAE沿正方形的邊連續(xù)翻轉(zhuǎn)過(guò)程的展開(kāi)示意圖.請(qǐng)你探索:若k=1,則△PAE沿正方形的邊連續(xù)翻轉(zhuǎn)的次數(shù)n=______時(shí),頂點(diǎn)P第一次回到原來(lái)的起始位置;
(2)若k=2,則n=______時(shí),頂點(diǎn)P第一次回到原來(lái)的起始位置;若k=3,則n=______時(shí),頂點(diǎn)P第一次回到原來(lái)的起始位置;
(3)請(qǐng)你猜測(cè):使頂點(diǎn)P第一次回到原來(lái)的起始位置的n值與k之間的關(guān)系(請(qǐng)用含k的代數(shù)式表示n).
【答案】分析:正△PAE的頂點(diǎn)P在正方形內(nèi)按圖1中所示的方式連續(xù)地翻轉(zhuǎn),頂點(diǎn)P第一次回到原來(lái)的起始位置,實(shí)際上正方形周長(zhǎng)和與三角形的周長(zhǎng)和相等,正方形的周長(zhǎng)=4k,三角形的周長(zhǎng)=3,即找4k,3的最小公倍數(shù),由此求出k=1,2,3時(shí)n的值;故當(dāng)k是3的倍數(shù)時(shí),n=4k;當(dāng)k不是3的倍數(shù)時(shí),n=12k.
解答:解:正△PAE的頂點(diǎn)P在正方形內(nèi)按圖1中所示的方式連續(xù)地翻轉(zhuǎn),頂點(diǎn)P第一次回到原來(lái)的起始位置,實(shí)際上正方形周長(zhǎng)和與三角形的周長(zhǎng)和相等,正方形的周長(zhǎng)=4k,三角形的周長(zhǎng)=3,即找4k,3的最小公倍數(shù);
(1)當(dāng)k=1時(shí),4k,3的最小公倍數(shù)是12,故n=12;

(2)當(dāng)k=2時(shí),4k,3的最小公倍數(shù)是24,故n=24;當(dāng)k=3時(shí),4k,3的最小公倍數(shù)是12,故n=12;

(3)當(dāng)k是3的倍數(shù)時(shí)n=4k,當(dāng)k不是3的倍數(shù)時(shí)n=12k.
點(diǎn)評(píng):本題考查了等邊三角形在正方形中的翻轉(zhuǎn)中周長(zhǎng)的最小公倍數(shù)問(wèn)題,注意找到等量關(guān)系.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:2005年全國(guó)中考數(shù)學(xué)試題匯編《圖形的相似》(07)(解析版) 題型:解答題

(2005•無(wú)錫)已知圖1和圖2中的每個(gè)小正方形的邊長(zhǎng)都是1個(gè)單位.
(1)將圖1中的格點(diǎn)△ABC,先向右平移3個(gè)單位,再向上平移2個(gè)單位,得到△A1B1C1,請(qǐng)你在圖1中畫(huà)出△A1B1C1;
(2)在圖2中畫(huà)出一個(gè)與格點(diǎn)△DEF相似但相似比不等于1的格點(diǎn)三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2005年全國(guó)中考數(shù)學(xué)試題匯編《圖形的平移》(01)(解析版) 題型:解答題

(2005•無(wú)錫)已知圖1和圖2中的每個(gè)小正方形的邊長(zhǎng)都是1個(gè)單位.
(1)將圖1中的格點(diǎn)△ABC,先向右平移3個(gè)單位,再向上平移2個(gè)單位,得到△A1B1C1,請(qǐng)你在圖1中畫(huà)出△A1B1C1;
(2)在圖2中畫(huà)出一個(gè)與格點(diǎn)△DEF相似但相似比不等于1的格點(diǎn)三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2005年全國(guó)中考數(shù)學(xué)試題匯編《三角形》(14)(解析版) 題型:解答題

(2005•無(wú)錫)已知,點(diǎn)P是正方形ABCD內(nèi)的一點(diǎn),連PA、PB、PC.
(1)將△PAB繞點(diǎn)B順時(shí)針旋轉(zhuǎn)90°到△P′CB的位置(如圖1).
①設(shè)AB的長(zhǎng)為a,PB的長(zhǎng)為b(b<a),求△PAB旋轉(zhuǎn)到△P′CB的過(guò)程中邊PA所掃過(guò)區(qū)域(圖1中陰影部分)的面積;
②若PA=2,PB=4,∠APB=135°,求PC的長(zhǎng);
(2)如圖2,若PA2+PC2=2PB2,請(qǐng)說(shuō)明點(diǎn)P必在對(duì)角線AC上.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2005年全國(guó)中考數(shù)學(xué)試題匯編《三角形》(12)(解析版) 題型:解答題

(2005•無(wú)錫)已知正方形ABCD的邊長(zhǎng)AB=k(k是正整數(shù)),正△PAE的頂點(diǎn)P在正方形內(nèi),頂點(diǎn)E在邊AB上,且AE=1.將△PAE在正方形內(nèi)按圖1中所示的方式,沿著正方形的邊AB、BC、CD、DA、AB、…連續(xù)地翻轉(zhuǎn)n次,使頂點(diǎn)P第一次回到原來(lái)的起始位置.

(1)如果我們把正方形ABCD的邊展開(kāi)在一直線上,那么這一翻轉(zhuǎn)過(guò)程可以看作是△PAE在直線上作連續(xù)的翻轉(zhuǎn)運(yùn)動(dòng).圖2是k=1時(shí),△PAE沿正方形的邊連續(xù)翻轉(zhuǎn)過(guò)程的展開(kāi)示意圖.請(qǐng)你探索:若k=1,則△PAE沿正方形的邊連續(xù)翻轉(zhuǎn)的次數(shù)n=______時(shí),頂點(diǎn)P第一次回到原來(lái)的起始位置;
(2)若k=2,則n=______時(shí),頂點(diǎn)P第一次回到原來(lái)的起始位置;若k=3,則n=______時(shí),頂點(diǎn)P第一次回到原來(lái)的起始位置;
(3)請(qǐng)你猜測(cè):使頂點(diǎn)P第一次回到原來(lái)的起始位置的n值與k之間的關(guān)系(請(qǐng)用含k的代數(shù)式表示n).

查看答案和解析>>

同步練習(xí)冊(cè)答案