在二次函數(shù)中,函數(shù)y與自變量x的部分對(duì)應(yīng)值如下表:
x | … | -1 | 0 | 1 | 2 | 3 | … |
y | … | 8 | 3 | 0 | -1 | 0 | … |
(1) y=(x-1)(x-3)(或y=x2-4x+3);(2) 當(dāng)1<x<3時(shí),y<0.
解析試題分析:(1)根據(jù)表中的數(shù)據(jù)知,該函數(shù)與x軸的兩個(gè)交點(diǎn)坐標(biāo)是(1,0),(3,0),設(shè)y=a(x-1)(x-3)(a≠0),然后把點(diǎn)(0,3)代入求得a值;
(2)根據(jù)二次函數(shù)的性質(zhì)進(jìn)行解答.
試題解析:(1)∵函數(shù)與x軸的兩個(gè)交點(diǎn)坐標(biāo)是(1,0),(3,0),
∴設(shè)y=a(x-1)(x-3)(a≠0).
又∵該函數(shù)圖象經(jīng)過點(diǎn)(0,3),
∴3=3a,
解得,a=1.
故該函數(shù)解析式為y=(x-1)(x-3)(或y=x2-4x+3);
(2)由(1)知,該函數(shù)解析式為y=(x-1)(x-3),則該拋物線的開口方向向上.
∵y<0,
∴1<x<3.
答:當(dāng)1<x<3時(shí),y<0.
考點(diǎn): 1.待定系數(shù)法求二次函數(shù)解析式,2.二次函數(shù)的性質(zhì).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖,已知△OAB的頂點(diǎn)A(-6,0),B(0,2),O是坐標(biāo)原點(diǎn), 將△OAB繞點(diǎn)O按順時(shí)針旋轉(zhuǎn)90°,得到△ODC.
(1)寫出C點(diǎn)的坐標(biāo)為 ;
(2)設(shè)過A,D,C三點(diǎn)的拋物線的解析式為,求其解析式?
(3)證明AB⊥BE.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
某區(qū)政府大力扶持大學(xué)生創(chuàng)業(yè).李剛在政府的扶持下投資銷售一種進(jìn)價(jià)為每件20元的護(hù)眼臺(tái)燈.銷售過程中發(fā)現(xiàn),每月銷售量y(件)與銷售單價(jià)x(元)之間的關(guān)系可近似的看作一次函數(shù):y=-10x+500.
(1)設(shè)李剛每月獲得利潤為w(元),當(dāng)銷售單價(jià)定為每臺(tái)多少元時(shí),每月可獲得最大利潤?
(2)如果李剛想要每月獲得2000元的利潤,那么銷售單價(jià)應(yīng)定為多少元?
(3)根據(jù)物價(jià)部門規(guī)定,這種護(hù)眼臺(tái)燈的銷售單價(jià)不得高于32元,如果李剛想要每月獲得的利潤不低于2000元,那么他每月的成本最少需要多少元?(成本=進(jìn)價(jià)×銷售量)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖,拋物線y=x2-2x-3與x軸交于A、B兩點(diǎn),與y軸交于點(diǎn)C.
(1)點(diǎn)A的坐標(biāo)為 點(diǎn)B的坐標(biāo)為 ,點(diǎn)C的坐標(biāo)為 ;
(2)設(shè)拋物線y=x2-2x-3的頂點(diǎn)坐標(biāo)為M,求四邊形ABMC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
為了改善市民的生活環(huán)境,我市在某河濱空地處修建一個(gè)如圖所示的休閑文化廣場(chǎng).在Rt△內(nèi)修建矩形水池,使頂點(diǎn)、在斜邊上,、分別在直角邊、上;又分別以、、為直徑作半圓,它們交出兩彎新月(圖中陰影部分),兩彎新月部分栽植花草;其余空地鋪設(shè)地磚.其中,.設(shè)米,米.
(1)求與之間的函數(shù)解析式;
(2)當(dāng)為何值時(shí),矩形的面積最大?最大面積是多少?
(3)求兩彎新月(圖中陰影部分)的面積,并求當(dāng)為何值時(shí),矩形的面積等于兩彎新月面積的?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
(1)已知二次函數(shù),請(qǐng)你化成的形式,并在直角坐標(biāo)系中畫出的圖象;
(2)如果,是(1)中圖象上的兩點(diǎn),且,請(qǐng)直接寫出、的大小關(guān)系;
(3)利用(1)中的圖象表示出方程的根來,要求保留畫圖痕跡,說明結(jié)果.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖1,在平面直角坐標(biāo)系中,有一矩形ABCD,其三個(gè)頂點(diǎn)的坐標(biāo)分別為A(2,0)、B(8,0)、C(8,3).將直線l:y=-3x-3以每秒3個(gè)單位的速度向右運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t秒.
(1)當(dāng)t=_________時(shí),直線l經(jīng)過點(diǎn)A.(直接填寫答案)
(2)設(shè)直線l掃過矩形ABCD的面積為S,試求S>0時(shí)S與t的函數(shù)關(guān)系式.
(3)在第一象限有一半徑為3、且與兩坐標(biāo)軸恰好都相切的⊙M,在直線l出發(fā)的同時(shí),⊙M以每秒2個(gè)單位的速度向右運(yùn)動(dòng),如圖2所示,則當(dāng)t為何值時(shí),直線l與⊙M相切?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
已知二次函數(shù)y=x2-2x-3的圖象與x軸交于A、B兩點(diǎn)(A在B的左側(cè)),與y軸交于點(diǎn)C,頂點(diǎn)為D.
(1)求點(diǎn)A、B、C、D的坐標(biāo),并在下面直角坐標(biāo)系中畫出該二次函數(shù)的大致圖象;
(2)說出拋物線y=x2-2x-3可由拋物線y=x2如何平移得到?
(3)求四邊形OCDB的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖,用長為6m的鋁合金條制成“日”字形窗框,若窗框的寬為xm,窗戶的透光面積為ym2(鋁合金條的寬度不計(jì)).
(1)求出y與x的函數(shù)關(guān)系式;
(2)如何安排窗框的長和寬,才能使得窗戶的透光面積最大?并求出此時(shí)的最大面積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com