【題目】如圖,在△ABC中,AB=AC,∠BAC=120°,AB的垂直平分線交AB于E,交BC于M,AC的垂直平分線交AC于F,交BC于N.連接AM、AN.
(1)求∠MAN的大。
(2)求證:BM=CN.
【答案】(1)∠MAN=60°;(2)見解析.
【解析】
(1)由在△ABC中,AB=AC,∠BAC=120°,可求得∠B與∠C的度數(shù),又由AB的垂直平分線交AB于E,交BC于M;可得AM=BM,繼而求得∠MAB的度數(shù),則可求得∠AMN的度數(shù),同樣方法得出∠ANM的度數(shù),繼而求得答案;
(2)先得△AMN為等邊三角形,則可得AM=AN=MN,又由BM=AM,CN=AN,即可證得結(jié)論.
(1)解:∵AB=AC,∠A=120°,
∴∠B=∠C=30°,
∵直線ME垂直平分AB,
∴BM=AM,
∴∠B=∠MAB=30°,
∴∠AMN=∠B+∠MAB=60°,
同理可得:∠ANM=60°.
∴∠MAN=180°-60°-60°=60°;
(2)證明:∵在△AMN中,∠AMN=∠ANM=∠MAN=60°,
∴△AMN為等邊三角形.
即AM=AN=MN,
又∵BM=AM,CN=AN,
∴BM=CN.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,O為坐標原點,點A(﹣1,5)和點B(m,﹣1)均在反比例函數(shù)圖象上
(1)求m,k的值;
(2)當x滿足什么條件時,﹣x+4>﹣;
(3)P為y軸上一點,若△ABP的面積是△ABO面積的2倍,直接寫出點P的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】銅陵市“雨污分流”工程建設(shè)期間,某工程隊承包了一段總長2400米的地下排水管道鋪設(shè)任務(wù),按原計劃鋪設(shè)800米后,為盡快完成任務(wù),后來每天的工作效率比原計劃提高了25%,結(jié)果共用13天完成任務(wù).
(1)求原計劃平均每天鋪設(shè)管道多少米?
(2)若原來每天支付工人工資為2000元,提高工作效率后每天支付給工人的工資增長了30%,則完成整個工程后共支付工人工資多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1有兩條長度相等的相交線段AB、CD,它們相交的銳角中有一個角為60°,為了探究AD、CB與CD(或AB)之間的關(guān)系,小亮進行了如下嘗試:
(1)在其他條件不變的情況下使得AD∥BC,如圖2,將線段AB沿AD方向平移AD的長度,得到線段DE,然后聯(lián)結(jié)BE,進而利用所學知識得到AD、CB與CD(或AB)之間的關(guān)系: ;(直接寫出結(jié)果)
(2)根據(jù)小亮的經(jīng)驗,請對圖1的情況(AD與CB不平行)進行嘗試,寫出AD、CB與CD(或AB)之間的關(guān)系,并進行證明;
(3)綜合(1)、(2)的證明結(jié)果,請寫出完整的結(jié)論: .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某測量隊在山腳A處測得山上樹頂仰角為45°(如圖),測量隊在山坡上前進600米到D處,再測得樹頂?shù)难鼋菫?/span>60°,已知這段山坡的坡角為30°,如果樹高為15米,則山高為( )(精確到1米, =1.732).
A. 585米 B. 1014米 C. 805米 D. 820米
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在中,,,于點D,點E是直線AC上一動點,連接DE,過點D作,交直線BC于點F.
探究發(fā)現(xiàn):
如圖1,若,點E在線段AC上,則______;
數(shù)學思考:
如圖2,若點E在線段AC上,則______用含m,n的代數(shù)式表示;
當點E在直線AC上運動時,中的結(jié)論是否任然成立?請僅就圖3的情形給出證明;
拓展應用:若,,,請直接寫出CE的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知,在△ABC中,AC=BC,∠ACB=90°,直線CP不過點A,B,且不平分∠ACB,點B關(guān)于直線CP的對稱點為E,直線AE交直線CP于點F.
(1)如圖1,直線CP與線段AB相交,若∠PCB=25°,求∠CAF的度數(shù);
(2)如圖1,當直線CP繞點C旋轉(zhuǎn)時,記∠PCB=α(0°<α<90°,且α≠45°).
①∠FEB的大小是否改變,若不變,求出∠FEB的度數(shù);若改變,請用含α的式子表示).
②找出線段AF,EF,BC的數(shù)量關(guān)系,并給出證明.
(3)如圖2,當直線CP在△ABC外側(cè),且0°<∠ACP<45°時.若BC=5,EF=8,求CF的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知拋物線: .
(1)求拋物線的頂點坐標.
(2)若直線經(jīng)過(2,0)點且與軸垂直,直線經(jīng)過拋物線的頂點與坐標原點,且與的交點P在拋物線上.求拋物線的表達式.
(3)已知點A(0,2),點A關(guān)于軸的對稱點為點B.拋物線與線段AB恰有一個公共點,結(jié)合函數(shù)圖象寫出的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com