【題目】如圖所示,已知:(x>0)圖象上一點P,PAx軸于點A(a,0),點B坐標為(0,b)(b0).動點M在y軸上,且在B點上方,動點N在射線AP上,過點B作AB的垂線,交射線AP于點D,交直線MN于點Q,連接AQ,取AQ的中點為C.若四邊形BQNC是菱形,面積為2,此時P點的坐標為( 。

A. (3,2) B. ,3 C. D. ,

【答案】A

【解析】

首先求出∠BQC=60°,∠BAQ=30°,然后證明ABQ≌△ANQ,進而求出∠BAO=30°,由S四邊形BQNC=2,求出OA=3,于是求出P點坐標.

解:連接BN,NC,
四邊形BQNC是菱形,
BQ=BC=NQ,BQC=NQC,
ABBQ,CAQ的中點,
BC=CQ=12AQ,
∴∠BQC=60°,BAQ=30°,
ABQANQ中,
,
∴△ABQ≌△ANQ(SAS),
∴∠BAQ=NAQ=30°,
∴∠BAO=30°,
S菱形BQNC=2=12×CQ×BN,
CQ=2t=BQ,則BN=2×(2t×)=2t,
t=1
BQ=2,
∵在RtAQB中,∠BAQ=30°,
AB=BQ=2,
∵∠BAO=30°
OA=AB=3,
又∵P點在反比例函數(shù)y=的圖象上,
P點坐標為(3,2).
故選A.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】某商店經銷一種雙肩包,已知這種雙肩包的成本價為每個30元.市場調查發(fā)現(xiàn),這種雙肩包每天的銷售量y(單位:個)與銷售單價x(單位:元)有如下關系:y=-x+60(30≤x≤60).

設這種雙肩包每天的銷售利潤為w元.

(1)求w與x之間的函數(shù)解析式;

(2)這種雙肩包銷售單價定為多少元時,每天的銷售利潤最大?最大利潤是多少元?

(3)如果物價部門規(guī)定這種雙肩包的銷售單價不高于48元,該商店銷售這種雙肩包每天要獲得200元的銷售利潤,銷售單價應定為多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在中,,BDAC的中線,過點C于點E,過點ABD的平行線,交CE的延長線于點F,在AF的延長線上截取FG=BD,連接 BG,DF.若AF=8,CF=6,則四邊形BDFG的周長為_______________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一塊直角三角形的紙片,兩直角邊AC=6cmBC=8cm,現(xiàn)將直角邊AC沿直線AD折疊,使它落在斜邊AB上,且與AE重合,則CD等于(   .

A. 2 cm B. 4 cm C. 3 cm D. 5 cm

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,將矩形沿折疊,使頂點恰好落在邊的中點處,若,,則的長為___________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】重慶八中渝北校區(qū)前的同茂大道的路有一座小山,因工程開發(fā)需要爆破.小山北偏東方向,距小山米的處是同茂大道中央公園東公交站;小山北偏西方向,距小山米的處是同茂大道上麗山公交站.

1)爆破時,在爆破點周圍米范圍有危險請問,為了安全,在爆破小山時需不需要暫時封閉同茂大道?請通過計算說明理由;

2)點是同茂大道上一點(點不與點重合),,區(qū)域是規(guī)劃中的公園,問:這個公園占地多少平方米?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】 為更新果樹品種,某果園計劃新購進A、B兩個品種的果樹苗栽植培育,若計劃購進這兩種果樹苗共45棵,其中A種苗的單價為7元/棵,購買B種苗所需費用y(元)與購買數(shù)量x(棵)之間存在如圖所示的函數(shù)關系.

1)求yx的函數(shù)關系式;

2)若在購買計劃中,B種苗的數(shù)量不超過35棵,但不少于A種苗的數(shù)量,請設計購買方案,使總費用最低,并求出最低費用.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在RtABC中∠BAC90°,DE分別是AB,BC的中點,FCA的延長線上∠FDA=∠B,AC6AB8,則四邊形AEDF的周長為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】人們在長期的數(shù)學實踐中總結了許多解決數(shù)學問題的方法,形成了許多光輝的數(shù)學想法,其中轉化思想是中學教學中最活躍,最實用,也是最重要的數(shù)學思想,例如將不規(guī)則圖形轉化為規(guī)則圖形就是研究圖形問題比較常用的一種方法.

問題提出:求邊長分別為、、的三角形面積.

問題解決:

在解答這個問題時,先建立一個正方形網格(每個小正方形的邊長為1),再在網格中畫出邊長分別為

、的格點三角形(如圖),是角邊為12的直角三角形斜邊,是直角邊分別為13的直角三角形的斜邊,是直角邊分別為23的直角三角形斜邊,用一個大長方形的面積減去三個直角三角形的面積,這樣不需求的高,而借用網格就能計算它的面積.

1)請直接寫出圖①中的面積為____________.

2)類比遷移:求邊長分別為、的三角形面積(請利用圖②的正方形網格畫出相應的,并求出它的面積)

3)思維拓展:求邊長分別為,的三角形的面積

4)如圖(3),已知,以,為邊向外作正方形,正方形,連接,若,則六邊形 的面積是_________.

查看答案和解析>>

同步練習冊答案