如圖,PA、PB是⊙O的切線,切點分別是A、B,若∠APB=60°,PA=4.則⊙O的半徑是______.
連接OA、OB、OP,如下圖所示:
∵PA、PB為圓O的兩條切線,
∴由切線長定理可知:PA=PB,OB⊥PA,OA⊥PA;
∵OA、OB為半徑長,PO=PO,
∴△PBO≌△PAO(SSS),
∴∠APO=∠BPO=30°;
∵tan∠APO=
OA
AP
=
3
3

∴OA=
3
3
×
PA=
4
3
3
,
所以圓的半徑為
4
3
3
,
故此題應(yīng)該填
4
3
3
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

(5二二9•朝陽)如圖,⊙O是Rt△6BC的外接圓,點O在6B上,BD⊥6B,點B是垂足,OD6C,連接CD.
求證:CD是⊙O的切線.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,AB是⊙O的直徑,C為AB延長線上一點,CD與⊙O相切,切點為E,AD⊥CD于點D,交⊙O于點F,若⊙O的半徑為2,設(shè)BC=x,DF=y,則y關(guān)于x的函數(shù)解析式為y=______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在△ABC中,∠C=90°,AD是∠BAC的平分線,AC=3
3
,DC=3,O是邊AB上一動點(O與點A和B不重合),以O(shè)A為半徑的⊙O與AB相交于點E.
(1)若⊙O經(jīng)過點D,求證:BC與⊙O相切;
(2)試求在(1)中⊙O的半徑OA的長度;
(3)請分別寫出⊙O與BC所在直線相交和相離時OA的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,AB是⊙O的直徑,BC與⊙O相切線于點B,AC與⊙O相交于點D,E為BC的中點,連接DE.
(1)求證:直線DE是⊙O的切線;
(2)若∠BED=70°,⊙O的半徑為2,求劣弧BD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,AB為⊙O的直徑,弦CD與AB相交于E,DE=EC,過點B的切線與AD的延長線交于F,過E作EG⊥BC于G,延長GE交AD于H.
(1)求證:AH=HD;
(2)若cos∠C=
4
5
,DF=9,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,AB是⊙O的直徑,AC是⊙O的切線,且AB=AC,則∠C的度數(shù)是______度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,一圓內(nèi)切于四邊形ABCD,且AB=8,CD=5,則AD+BC的長為______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖1,已知l1l2,點A、B在直線l1上,AB=4,過點A作AC⊥l2,垂足為C,AC=3.過點A的直線與直線l2交于點P,以點C為圓心,CP為半徑作圓C(如圖2).
(1)當(dāng)CP=1時,求cos∠CAP的值;
(2)如果圓C與以點B為圓心,BA為半徑的圓B相切,求CP的長;
(3)探究:當(dāng)直線AP處于什么位置時(只要求出CP的長),將圓C沿著直線AP翻折后得到的圓C′恰好與直線l2相切?并證明你的結(jié)論.

查看答案和解析>>

同步練習(xí)冊答案