【題目】如圖,四邊形ABCD是⊙O的內(nèi)接四邊形,AC為直徑,,DE⊥BC,垂足為E.
(1)判斷直線ED與⊙O的位置關(guān)系,并說(shuō)明理由;
(2)若CE=1,AC=4,求陰影部分的面積.
【答案】(1)與相切.理由見解析;(2).
【解析】
(1)連結(jié)OD,如圖,根據(jù)圓周角定理,由得到∠BAD=∠ACD,再根據(jù)圓內(nèi)接四邊形的性質(zhì)得∠DCE=∠BAD,所以∠ACD=∠DCE;利用內(nèi)錯(cuò)角相等證明OD∥BC,而DE⊥BC,則OD⊥DE,于是根據(jù)切線的判定定理可得DE為⊙O的切線;
(2)作OH⊥BC于H,易得四邊形ODEH為矩形,所以OD=EH=2,則CH=HE﹣CE=1,于是有∠HOC=30°,得到∠COD=60°,然后根據(jù)扇形面積公式、等邊三角形的面積公式和陰影部分的面積=S扇形OCD﹣S△OCD進(jìn)行計(jì)算即可.
(1)直線ED與⊙O相切.理由如下:
連結(jié)OD,如圖,∵,∴∠BAD=∠ACD.
∵∠DCE=∠BAD,∴∠ACD=∠DCE.
∵OC=OD,∴∠OCD=∠ODC,而∠OCD=∠DCE,∴∠DCE=∠ODC,∴OD∥BC.
∵DE⊥BC,∴OD⊥DE,∴DE為⊙O的切線;
(2)作OH⊥BC于H,則四邊形ODEH為矩形,∴OD=EH.
∵CE=1,AC=4,∴OC=OD=2,∴CH=HE﹣CE=2﹣1=1.在Rt△OHC中,∵OC=2,CH=1,∠OHC=90°,∠HOC=30°,∴∠COD=60°,∴陰影部分的面積=S扇形OCD﹣S△OCD
22
π.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀理解:如果兩個(gè)正數(shù)a,b,即a>0,b>0,有下面的不等式:,當(dāng)且僅當(dāng)a=b時(shí)取到等號(hào)我們把叫做正數(shù)a,b的算術(shù)平均數(shù),把叫做正數(shù)a,b的幾何平均數(shù),于是上述不等式可表述為:兩個(gè)正數(shù)的算術(shù)平均數(shù)不小于(即大于或等于)它們的幾何平均數(shù).它在數(shù)學(xué)中有廣泛的應(yīng)用,是解決最值問題的有力工具.
初步探究:(1)已知x>0,求函數(shù)y=x+的最小值.
問題遷移:(2)學(xué)校準(zhǔn)備以圍墻一面為斜邊,用柵欄圍成一個(gè)面積為100m2的直角三角形,作為英語(yǔ)角,直角三角形的兩直角邊各為多少時(shí),所用柵欄最短?
創(chuàng)新應(yīng)用:(3)如圖,在直角坐標(biāo)系中,直線AB經(jīng)點(diǎn)P(3,4),與坐標(biāo)軸正半軸相交于A,B兩點(diǎn),當(dāng)△AOB的面積最小時(shí),求△AOB的內(nèi)切圓的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下面是小明設(shè)計(jì)的“作三角形的高線”的尺規(guī)作圖過程.
已知:△ABC.
求作:BC邊上的高線.
作法:如圖,
①以點(diǎn)C為圓心,CA為半徑畫。
②以點(diǎn)B為圓心,BA為半徑畫弧,兩弧相交于點(diǎn)D;
③連接AD,交BC的延長(zhǎng)線于點(diǎn)E.
所以線段AE就是所求作的BC邊上的高線.
根據(jù)小明設(shè)計(jì)的尺規(guī)作圖過程,
(1)使用直尺和圓規(guī),補(bǔ)全圖形;(保留作圖痕跡)
(2)完成下面證明.
證明:∵CA=CD,
∴點(diǎn)C在線段AD的垂直平分線上( ) (填推理的依據(jù)).
∵ = ,
∴點(diǎn)B在線段AD的垂直平分線上.
∴ BC是線段AD的垂直平分線.
∴AD⊥BC.
∴AE就是BC邊上的高線.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,已知拋物線y=ax2+bx+c(a≠0)經(jīng)過點(diǎn)A(﹣2,0)、B(4,0)、C(0,﹣8),與直線y=x﹣4交于B,D兩點(diǎn)
(1)求拋物線的解析式并直接寫出D點(diǎn)的坐標(biāo);
(2)點(diǎn)P為直線BD下方拋物線上的一個(gè)動(dòng)點(diǎn),試求出△BDP面積的最大值及此時(shí)點(diǎn)P的坐標(biāo);
(3)點(diǎn)Q是線段BD上異于B、D的動(dòng)點(diǎn),過點(diǎn)Q作QF⊥x軸于點(diǎn)F,交拋物線于點(diǎn)G,當(dāng)△QDG為直角三角形時(shí),直接寫出點(diǎn)Q的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在矩形ABCD中,AB=4,AD=6,E是AB邊的中點(diǎn),F是線段BC上的動(dòng)點(diǎn),將ΔEBF沿EF所在直線折疊得到ΔEB' F,連接B' D,則B' D的最小值是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線與反比例函數(shù)在第一象限內(nèi)的圖象相交于點(diǎn).
(1)求反比例函數(shù)的解析式;
(2)將直線向上平移后與反比例函數(shù)圖象在第一象限內(nèi)交于點(diǎn),與軸交于點(diǎn),且的面積為,求直線的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,在平面直角坐標(biāo)系中,拋物線與軸交于、兩點(diǎn)(點(diǎn)在點(diǎn)的左側(cè)),與軸交于點(diǎn),點(diǎn)為拋物線的頂點(diǎn).
(1)若點(diǎn)坐標(biāo)為,求拋物線的解析式和點(diǎn)的坐標(biāo);
(2)若點(diǎn)為拋物線對(duì)稱軸上一點(diǎn),且點(diǎn)的縱坐標(biāo)為,點(diǎn)為拋物線在軸上方一點(diǎn),若以、、、為頂點(diǎn)的四邊形為平行四邊形時(shí),求的值;
(3)直線與(1)中的拋物線交于點(diǎn)、(如圖2),將(1)中的拋物線沿著該直線方向進(jìn)行平移,平移后拋物線的頂點(diǎn)為,與直線的另一個(gè)交點(diǎn)為,與軸的交點(diǎn)為,在平移的過程中,求的長(zhǎng)度;當(dāng)時(shí),求點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,拋物線,經(jīng)過點(diǎn)、,過點(diǎn)作軸的平行線交拋物線于另一點(diǎn).
(1)求拋物線的表達(dá)式及其頂點(diǎn)坐標(biāo);
(2)如圖,點(diǎn)是第一象限中上方拋物線上的一個(gè)動(dòng)點(diǎn),過點(diǎn)作于點(diǎn),作軸于點(diǎn),交于點(diǎn),在點(diǎn)運(yùn)動(dòng)的過程中,的周長(zhǎng)是否存在最大值?若存在,求出這個(gè)最大值;若不存在,請(qǐng)說(shuō)明理由;
(3)如圖,連接,在軸上取一點(diǎn),使和相似,請(qǐng)求出符合要求的點(diǎn)坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:正方形中,點(diǎn)、、、分別在、、、上,且,
四邊形是正方形嗎?為什么?
若正方形的邊長(zhǎng)為,且,請(qǐng)求出四邊形的面積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com