【題目】某公司快遞員甲勻速騎車前往某小區(qū)送物件,出發(fā)幾分鐘后,快遞員乙發(fā)現(xiàn)甲的手機落在公司,無法聯(lián)系,于是乙勻速騎車去追趕甲.乙剛出發(fā)2分鐘時,甲也發(fā)現(xiàn)自己手機落在公司,立刻按原路原速騎車回公司,2分鐘后甲遇到乙,乙把手機給甲后立即原路原速返回公司,甲繼續(xù)原路原速趕往某小區(qū)送物件,甲乙兩人相距的路程y(米)與甲出發(fā)的時間x(分鐘)之間的關系如圖所示(乙給甲手機的時間忽略不計).則乙回到公司時,甲距公司的路程是______米.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,平行四邊形的頂點,的坐標分別為,,將平行四邊形繞點逆時針方向旋轉得到平行四邊形,當點落在的延長線上時,線段交于點,則線段的長度為________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為加快“智慧校園”建設,某市準備為試點學校采購一批兩種型號的一體機,經(jīng)過市場調(diào)查發(fā)現(xiàn),每套型一體機的價格比每套型一體機的價格多萬元,且用萬元恰好能購買套型一體機和套型一體機.
(1)列二元一次方程組解決問題:求每套型和型一體機的價格各是多少萬元?
(2)由于需要,決定再次采購型和型一體機共套,此時每套型體機的價格比原來上漲,每套型一體機的價格不變.設再次采購型一體機套,那么該市至少還需要投入多少萬元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】我國南水北調(diào)中線工程的起點是丹江水庫,按照工程計劃,需對原水庫大壩進行混凝土培厚加高,使壩高由原來的162米增加到176.6米,以抬高蓄水位.如圖是某一段壩體加高工程的截面示意圖,其中原壩體的高為BE,背水坡坡角∠BAE=68°,新壩體的高為DE,背水坡CD的坡度為:1.求工程完工后背水坡底端水平方向增加的寬度AC.(結果精確到0.1米.參考數(shù)據(jù):sin68°≈0.93,cos68°≈0.37,tan68°≈2.50,≈1.73).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小亮家與姥姥家相距24km,小亮8:00從家出發(fā),騎自行車去姥姥家.媽媽8:30從家出發(fā),乘車沿相同路線去姥姥家.在同一直角坐標系中,小亮和媽媽的行進路程S(km)與北京時間t(時)的函數(shù)圖象如圖所示.根據(jù)圖象得到小亮結論,其中錯誤的是( )
A. 小亮騎自行車的平均速度是12km/h
B. 媽媽比小亮提前0.5小時到達姥姥家
C. 媽媽在距家12km處追上小亮
D. 9:30媽媽追上小亮
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,點D是AB上一點,以BD為直徑的⊙O和AC相切于點P.
(1)求證:BP平分∠ABC;
(2)若PC=1,AP=3,求BC的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,矩形OABC的頂點A,C分別在x軸,y軸的正半軸上,且OA=4,OC=3,若拋物線經(jīng)過O,A兩點,且頂點在BC邊上,對稱軸交AC于點D,動點P在拋物線對稱軸上,動點Q在拋物線上.
(1)求拋物線的解析式;
(2)當PO+PC的值最小時,求點P的坐標;
(3)是否存在以A,C,P,Q為頂點的四邊形是平行四邊形?若存在,請直接寫出P,Q的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小明家的洗手盆上裝有一種抬啟式水龍頭(如圖1),完全開啟后,水流路線呈拋物線,把手端點A,出水口B和落水點C恰好在同一直線上,點A至出水管BD的距離為12cm,洗手盆及水龍頭的相關數(shù)據(jù)如圖2所示,現(xiàn)用高10.2cm的圓柱型水杯去接水,若水流所在拋物線經(jīng)過點D和杯子上底面中心E,則點E到洗手盆內(nèi)側的距離EH為_________cm.
(第16題圖)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com