【題目】化簡:﹣(﹣5)= , ﹣|﹣5|= .
科目:初中數(shù)學 來源: 題型:
【題目】下列運算正確的是( )
A.a2a2=2a2
B.a2+a2=a4
C.(1+2a)2=1+2a+4a2
D.(﹣a+1)(a+1)=1﹣a2
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AD是∠CAB的平分線,DE∥AB,DF∥AC,EF交AD于點O.請問:
(1)DO是∠EDF的平分線嗎?給出結(jié)論并說明理由.
(2)若將DO是∠EDF的平分線與AD是∠CAB的平分線,DE∥AB,DF∥AC中的任一條件交換,所得結(jié)論正確嗎?若正確,請選擇一個說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(10分)問題:如圖(1),在Rt△ACB中,∠ACB=90°,AC=CB,∠DCE=45°,試探究AD、DE、EB滿足的等量關(guān)系.
[探究發(fā)現(xiàn)]
小聰同學利用圖形變換,將△CAD繞點C逆時針旋轉(zhuǎn)90°得到△CBH,連接EH,由已知條件易得∠EBH=90°,∠ECH=∠ECB+∠BCH=∠ECB+∠ACD=45°.根據(jù)“邊角邊”,可證△CEH≌ ,得EH=ED.
在Rt△HBE中,由 定理,可得BH2+EB2=EH2,由BH=AD,可得AD、DE、EB之間的等量關(guān)系是 .
[實踐運用]
(1)如圖(2),在正方形ABCD中,△AEF的頂點E、F分別在BC、CD邊上,高AG與正方形的邊長相等,求∠EAF的度數(shù);
(2)在(1)條件下,連接BD,分別交AE、AF于點M、N,若BE=2,DF=3,BM=2,運用小聰同學探究的結(jié)論,求正方形的邊長及MN的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在ABCD中,∠BAD的平分線交BC于點E,∠ABC的平分線交AD于點F,AE與BF相交于點O,連接EF.
(1)求證:四邊形ABEF是菱形;
(2)若AE=6,BF=8,CE= ,求ABCD的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,矩形OABC的對角線OB,AC相交于點D,且BE∥AC,AE∥OB,
(1)求證:四邊形AEBD是菱形;
(2)如果OA=3,OC=2,求出經(jīng)過點E的反比例函數(shù)解析式.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知線段AB的垂直平分線CP交AB于點P,且AP=2PC,現(xiàn)欲在線段AB上求作兩點D,E,使其滿足AD=DC=CE=EB,對于以下甲、乙兩種作法:
甲:分別作∠ACP、∠BCP的平分線,分別交AB于D、E,則D、E即為所求;乙:分別作AC、BC的垂直平分線,分別交AB于D、E,則D、E兩點即為所求.下列說法正確的是( 。
A. 甲、乙都正確 B. 甲、乙都錯誤
C. 甲正確,乙錯誤 D. 甲錯誤,乙正確
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,∠BAC=54°,以AB為直徑的 ⊙O分別交AC,BC于點D,E,過點B作⊙O的切線,交AC的延長線于點F.
(1)求證:BE=CE;
(2)求∠CBF的度數(shù);
(3)若AB=6,求的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com