【題目】請認真閱讀下面的數學小探究系列,完成所提出的問題:
(1)探究1,如圖①,在等腰直角三角形ABC中,∠ACB=90°,BC=3,將邊AB繞點B順時針旋轉90°得到線段BD,連接CD,過點D做BC邊上的高DE,則DE與BC的數量關系是 ,△BCD的面積為 ;
(2)探究2,如圖②,在一般的Rt△ABC中,∠ACB=90°,BC=a,將邊AB繞點B順時針旋轉90°得到線段BD,連接CD,請用含a的式子表示△BCD的面積,并說明理由;
(3)探究3:如圖③,在等腰三角形ABC中,AB=AC,BC=a,將邊AB繞點B順時針旋轉90°得到線段BD,連接CD,試探究用含a的式子表示△BCD的面積,要有探究過程.
【答案】(1)DE=BC,△BCD的面積為;(2)△BCD的面積為,理由詳見解析;(3)△BCD的面積為,理由詳見解析.
【解析】
(1)如圖1,過點D作BC的垂線,與BC的延長線交于點E,由垂直的性質就可以得出△ABC≌△BDE,就有DE=BC=3.進而由三角形的面積公式得出結論;
(2)如圖2,過點D作BC的垂線,與BC的延長線交于點E,由垂直的性質就可以得出△ABC≌△BDE,就有DE=BC=a.進而由三角形的面積公式得出結論;
(3)如圖3,過點A作AF⊥BC與F,過點D作DE⊥BC的延長線于點E,由等腰三角形的性質可以得出BFBC,由條件可以得出△AFB≌△BED就可以得出BF=DE,由三角形的面積公式就可以得出結論.
(1)如圖1,過點D作DE⊥CB交CB的延長線于E,∴∠BED=∠ACB=90°,由旋轉知:AB=BD,∠ABD=90°,∴∠ABC+∠DBE=90°.
∵∠A+∠ABC=90°,∴∠A=∠DBE.
在△ABC和△BDE中,∵,∴△ABC≌△BDE(AAS),∴BC=DE=3.
∵S△BCDBCDE,∴S△BCD×32=;
(2)△BCD的面積為.理由如下:
如圖2,過點D作BC的垂線,與BC的延長線交于點E,∴∠BED=∠ACB=90°.
∵線段AB繞點B順時針旋轉90°得到線段BE,∴AB=BD,∠ABD=90°,∴∠ABC+∠DBE=90°.
∵∠A+∠ABC=90°,∴∠A=∠DBE.
在△ABC和△BDE中,∵,∴△ABC≌△BDE(AAS),∴BC=DE=a.
∵S△BCDBCDE,∴S△BCD;
(3)如圖3,過點A作AF⊥BC與F,過點D作DE⊥BC的延長線于點E,∴∠AFB=∠E=90°,BFBCa,∴∠FAB+∠ABF=90°./p>
∵∠ABD=90°,∴∠ABF+∠DBE=90°,∴∠FAB=∠EBD.
∵線段BD是由線段AB旋轉得到的,∴AB=BD.
在△AFB和△BED中,∵,∴△AFB≌△BED(AAS),∴BF=DEa.
∵S△BCDBCDEaaa2,∴△BCD的面積為.
科目:初中數學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,D為AB中點,AE∥CD,CE∥AB.
(1)試判斷四邊形ADCE的形狀,并證明你的結論.
(2)連接BE,若∠BAC=30°,CE=1,求BE的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,△ABC三個頂點的坐標分別為A(1,1),B(4,2),C(3,4)
(1)請畫出將△ABC向左平移4個單位長度后得到的圖形△A1B1C1;
(2)請畫出△ABC關于原點O成中心對稱的圖形△A2B2C2;
(3)在x軸上找一點P,使PA+PB的值最小,請直接寫出點P的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,二次函數的圖象與軸正半軸相交于A、B兩點,與軸相交于點C,對稱軸為直線且OA=OC,則下列結論:①②③④關于的方程有一個根為其中正確的結論個數有( )
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某學校為了增強學生體質,決定開設以下體育課外活動項目:A.籃球 B.乒乓球C.羽毛球 D.足球,為了解學生最喜歡哪一種活動項目,隨機抽取了部分學生進行調查,并將調查結果繪制成了兩幅不完整的統計圖,請回答下列問題:
(1)這次被調查的學生共有 人;
(2)請你將條形統計圖(2)補充完整;
(3)在平時的乒乓球項目訓練中,甲、乙、丙、丁四人表現優(yōu)秀,現決定從這四名同學中任選兩名參加乒乓球比賽,求恰好選中甲、乙兩位同學的概率(用樹狀圖或列表法解答)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】桌面上有四張正面分別標有數字,,,的不透明卡片,它們除數字外其余全部相同,現將它們背面朝上洗勻.
(1)隨機翻開一張卡片,正面所標數字大于的概率為 ;
(2)隨機翻開一張卡片,從余下的三張卡片中再翻開一張,求翻開的兩張卡片正面所標數字之和是偶數的概率.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】二次函數的部分圖像如圖所示,圖像過點,對稱軸為直線,下列結論:(1);(2);(3)若點、點、點在該函數圖像上,則;(4)若方程的兩根為和,且,則.其中正確結論的序號是________.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】一次函數y=﹣x+1的圖象與反比例函數的圖象交點的縱坐標為2,當﹣3<x<﹣1時,反比例函數中y的取值范圍是( 。
A. B. C. D. ﹣3<y<﹣1
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com