23、已知:如圖,在△ABC中,AB=AC,以BC為直徑的半圓O與邊AB相交于點D,切線DE⊥AC,垂足為點E.
(1)求證△ABC是等邊三角形;
(2)若AE=1,求半圓O的半徑.
分析:本題已知DE是圓的切線,可以得到OD⊥AB,易證△BDO是等邊三角形,進而可以證出△ABC是等邊三角形.
解答:(1)證明:連接OD;
∵DE是圓的切線,
∴OD⊥DE,
又∵DE⊥AC,
∴OD∥AC;
∵AB=AC,
∴BD=OD;
又∵OD=OB,
∴OB=OD=BD,
∴△BDO是等邊三角形,
∴∠B=60°;
∵AB=AC,
∴△ABC是等邊三角形.
(2)解:連接CD,則
CD⊥AB,
∴BD=AD=OB,
在直角△ADE中,
∠A=60°,
∴AD=2AE=2,
∴OB=AD=2.
點評:本題主要考查了等邊三角形的證明方法,并且本題主要運用了切線的性質定理,切線垂直于過切點的半徑.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

34、已知:如圖,在AB、AC上各取一點,E、D,使AE=AD,連接BD,CE,BD與CE交于O,連接AO,∠1=∠2,
求證:∠B=∠C.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•啟東市一模)已知,如圖,在Rt△ABC中,∠C=90°,∠BAC的角平分線AD交BC邊于D.
(1)以AB邊上一點O為圓心,過A,D兩點作⊙O(不寫作法,保留作圖痕跡),再判斷直線BC與⊙O的位置關系,并說明理由;
(2)若(1)中的⊙O與AB邊的另一個交點為E,半徑為2,AB=6,求線段AD、AE與劣弧DE所圍成的圖形面積.(結果保留根號和π)《根據2011江蘇揚州市中考試題改編》

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知:如圖,在△ABC中,∠C=120°,邊AC的垂直平分線DE與AC、AB分別交于點D和點E.
(1)作出邊AC的垂直平分線DE;
(2)當AE=BC時,求∠A的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

已知:如圖,在AB、AC上各取一點E、D,使AE=AD,連接BD,CE,BD與CE交于O,連接AO,∠1=∠2,
求證:∠B=∠C.

查看答案和解析>>

科目:初中數(shù)學 來源:專項題 題型:證明題

已知:如圖,在AB、AC上各取一點,E、D,使AE=AD,連結BD,CE,BD與CE交于O,連結AO,
           ∠1=∠2;
求證:∠B=∠C

查看答案和解析>>

同步練習冊答案