以長為2的線段AB為邊作正方形ABCD,取AB的中點(diǎn)P,連結(jié)PD,在BA的延長線上取點(diǎn)F,使PF=PD,以AF為邊作正方形AMEF,點(diǎn)M在AD上(如圖所示).

(1)求AM、DM的長;

(2)說明AM2=AD·DM;

(3)你能找出圖中的黃金分割嗎?哪是黃金分割點(diǎn)?

答案:
解析:

  思路與技巧:根據(jù)題中的已知條件正方形,利用勾股定理易求出線段的長度.要說明AM2=AD·DM,關(guān)鍵求出AM、AD、DM的長度,計(jì)算一下它們的結(jié)果是否相等.


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖所示,以長為2的線段AB為邊作正方形ABCD,取AB的中點(diǎn)P,連接PD,在BA的延長線上取點(diǎn)F,
使PF=PD,以AF為邊作正方形AMEF,點(diǎn)M在AD上,則AM的長為(  )
A、
5
-1
B、
5
-1
2
C、3-
5
D、6-2
5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

以長為2的線段AB為邊作正方形ABCD,取AB的中點(diǎn)P,連接PD,在BA的延長線上取點(diǎn)F,使PF=PD,以AF為邊作正方形AMEF,點(diǎn)M在AD上.
(1)求AM,DM的長;
(2)求證:AM2=AD•DM;
(3)根據(jù)(2)的結(jié)論你能找出圖中的黃金分割點(diǎn)嗎?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:044

以長為2的線段AB為邊作正方形ABCD,取AB的中點(diǎn)P,連結(jié)PD,在BA的延長線上取點(diǎn)F,使.以AF為邊作正方形AMEF,點(diǎn)MAD上,如圖所示.

1)求AM、DM的長;

2)求證:

3)根據(jù)(2)的結(jié)論你能找出圖中的黃金分割點(diǎn)嗎?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:單選題

如圖所示,以長為2的線段AB為邊作正方形ABCD,取AB的中點(diǎn)P,連接PD,在BA的延長線上取點(diǎn)F,
使PF=PD,以AF為邊作正方形AMEF,點(diǎn)M在AD上,則AM的長為


  1. A.
    數(shù)學(xué)公式-1
  2. B.
    數(shù)學(xué)公式
  3. C.
    3-數(shù)學(xué)公式
  4. D.
    6-2數(shù)學(xué)公式

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

以長為2的線段AB為邊作正方形ABCD,取AB的中點(diǎn)P,連接PD,在BA的延長線上取點(diǎn)F,使PF=PD,以AF為邊作正方形AMEF,點(diǎn)M在AD上.
(1)求AM,DM的長;
(2)求證:AM2=AD•DM;
(3)根據(jù)(2)的結(jié)論你能找出圖中的黃金分割點(diǎn)嗎?

查看答案和解析>>

同步練習(xí)冊答案