如圖,△ABC中,∠BAC=120°,AD⊥BC于D,且AB+BD=DC,則∠C的大小是


  1. A.
    20°
  2. B.
    25°
  3. C.
    30°
  4. D.
    大于30°
A
分析:在DC上取DE=DB.連接AE,在Rt△ABD和Rt△AED中,BD=ED,AD=AD.證明△ABD≌△AED即可求解;
解答:解:如圖,
在DC上取DE=DB.連接AE,在Rt△ABD和Rt△AED中,BD=ED,AD=AD.
∴△ABD≌△AED.
∴AB=AE,∠B=∠AED.
又∵AB+BD=CD
∴EC=CD-DE=CD-BD=(AB+BD)-BD=AB=AE,
即EC=AE,
∴∠C=∠CAE
∴∠B=∠AED=2∠C
又∵∠B+∠C=180°-∠BAC=60°
∴∠C=20°,
故選A.
點評:本題考查了等邊三角形的判定與性質及三角形內角和定理,屬于基礎圖,關鍵是巧妙作出輔助線.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

26、已知:如圖,△ABC中,點D在AC的延長線上,CE是∠DCB的角平分線,且CE∥AB.
求證:∠A=∠B.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

27、已知:如圖,△ABC中,∠BAC=60°,D、E兩點在直線BC上,連接AD、AE.
求:∠1+∠2+∠3+∠4.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

27、如圖,△ABC中,AD⊥BC于D,DN⊥AC于N,DM⊥AB于M
求證:∠ANM=∠B.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

14、如圖,△ABC中,∠BAC=120°,AD⊥BC于D,且AB+BD=DC,則∠C的大小是( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)已知,如圖,△ABC中,點D在BC上,且∠1=∠C,∠2=2∠3,∠BAC=70°.
(1)求∠2的度數(shù);
(2)若畫∠DAC的平分線AE交BC于點E,則AE與BC有什么位置關系,請說明理由.

查看答案和解析>>

同步練習冊答案