(2013•牡丹江)如圖,邊長(zhǎng)為1的菱形ABCD中,∠DAB=60°.連結(jié)對(duì)角線AC,以AC為邊作第二個(gè)菱形ACEF,使∠FAC=60°.連結(jié)AE,再以AE為邊作第三個(gè)菱形AEGH使∠HAE=60°…按此規(guī)律所作的第n個(gè)菱形的邊長(zhǎng)是
3
n-1
3
n-1
分析:連接DB于AC相交于M,根據(jù)已知和菱形的性質(zhì)可分別求得AC,AE,AG的長(zhǎng),從而可發(fā)現(xiàn)規(guī)律根據(jù)規(guī)律不難求得第n個(gè)菱形的邊長(zhǎng).
解答:解:連接DB,
∵四邊形ABCD是菱形,
∴AD=AB.AC⊥DB,
∵∠DAB=60°,
∴△ADB是等邊三角形,
∴DB=AD=1,
∴BM=
1
2

∴AM=
3
2
,
∴AC=
3
,
同理可得AE=
3
AC=(
3
2,AG=
3
AE=3
3
=(
3
3,
按此規(guī)律所作的第n個(gè)菱形的邊長(zhǎng)為(
3
n-1,
故答案為(
3
n-1
點(diǎn)評(píng):此題主要考查菱形的性質(zhì)、等邊三角形的判定和性質(zhì)以及學(xué)生探索規(guī)律的能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•牡丹江)在Rt△ABC中,CA=CB,AB=9
2
,點(diǎn)D在BC邊上,連接AD,若tan∠CAD=
1
3
,則BD的長(zhǎng)為
6
6

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•牡丹江)在平面直角坐標(biāo)系中,點(diǎn)O是坐標(biāo)原點(diǎn),過(guò)點(diǎn)A(1,2)的直線y=kx+b與x軸交于點(diǎn)B,且S△AOB=4,則k的值是
k=
2
5
或-
2
3
k=
2
5
或-
2
3

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•牡丹江)如圖,點(diǎn)C是⊙O的直徑AB延長(zhǎng)線上的一點(diǎn),且有BO=BD=BC.
(1)求證:CD是⊙O的切線;
(2)若半徑OB=2,求AD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•牡丹江)在一個(gè)口袋中有4個(gè)完全相同的小球,把它們分別標(biāo)號(hào)為1,2,3,4,隨機(jī)地摸出一個(gè)小球不放回,再隨機(jī)地摸出一個(gè)小球,則兩次摸出的小球的標(biāo)號(hào)的和為奇數(shù)的概率是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•牡丹江)快、慢兩車(chē)分別從相距360千米路程的甲、乙兩地同時(shí)出發(fā),勻速行駛,先相向而行,快車(chē)到達(dá)乙地后,停留1小時(shí),然后按原路原速返回,快車(chē)比慢車(chē)晚1小時(shí)到達(dá)甲地,快、慢兩車(chē)距各自出發(fā)地的路程y(千米)與出發(fā)后所用的時(shí)間x(小時(shí))的關(guān)系如圖所示.

請(qǐng)結(jié)合圖象信息解答下列問(wèn)題:
(1)快、慢兩車(chē)的速度各是多少?
(2)出發(fā)多少小時(shí),快、慢兩車(chē)距各自出發(fā)地的路程相等?
(3)直接寫(xiě)出在慢車(chē)到達(dá)甲地前,快、慢兩車(chē)相距的路程為150千米的次數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案