①如圖1,在矩形ABCD中,E、F為BC上兩點,且BE=CF,求證:∠BAF=∠CDE;
②如圖2,在平面直角坐標系中,已知點B(4,2),BA⊥x軸于A.
(1)求tan∠BOA的值;
(2)將△AOB繞原點順時針方向旋轉(zhuǎn)90°后記作△A′OB′;
①畫出旋轉(zhuǎn)后的圖形并寫出A′、B′的坐標;
②求在旋轉(zhuǎn)過程中線段OA掃過的面積.

【答案】分析:①根據(jù)矩形的性質(zhì)求出AB=CD,∠B=∠C=90°,再求出BF=CE,然后根據(jù)“SAS”證明△ABF和△DCE全等,根據(jù)全等三角形對應(yīng)角相等即可證明;
②(1)根據(jù)點B的坐標,利用∠BOA的正切值等于對邊比鄰邊列式進行計算即可得解;
(2)根據(jù)網(wǎng)格結(jié)構(gòu)找出點A、B繞點O順時針旋轉(zhuǎn)90°后的對應(yīng)點A′、B′的位置,然后順次連接即可,再根據(jù)平面直角坐標系寫出點A′、B′的坐標;然后根據(jù)扇形面積公式列式進行計算即可求出OA掃過的面積.
解答:①證明:在矩形ABCD中,AB=CD,∠B=∠C=90°,
∵BE=CF,
∴BE+EF=CF+EF,
即BF=CE,
在△ABF和△DCE中,
,
∴△ABF≌△DCE(SAS),
∴∠BAF=∠CDE;

②解:(1)∵點B(4,2),
∴tan∠BOA==

(2)①如圖,△A′OB′即為所求作的圖形;
點A′(0,-4),B′(2,-4);
②線段OA掃過的面積==4π.
點評:本題考查了利用旋轉(zhuǎn)變換作圖,全等三角形的判定與性質(zhì),銳角三角形函數(shù),扇形的面積計算,比較簡單,熟練掌握網(wǎng)格結(jié)構(gòu)準確找出對應(yīng)點的位置是解題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖1,在矩形ABCD中,AB=12cm,BC=6cm,點P從A點出發(fā),沿A→B→C→D路線運動,到D點停止;點Q從D點出發(fā),沿D→C→B→A運動,到A點停止.若點P、點Q同時出發(fā),點P的速度為每秒1cm,點Q的速度為每秒2cm,a秒時點P、點Q同時改變速度,點P的速度變?yōu)槊棵隻(cm),點Q的速度變?yōu)槊棵隿(cm).如圖2是點P出發(fā)x秒后△APD的面積S1(cm2)與x(秒)的函數(shù)關(guān)系圖象;圖3是點Q出發(fā)x秒后△AQD的面積S2(cm2)與x(秒)的函數(shù)關(guān)系圖象.根據(jù)圖象:
(1)求a、b、c的值;
(2)設(shè)點P離開點A的路程為y1(cm),點Q到點A還需要走的路程為y2(cm),請分別寫出改變速度后y1、y2與出發(fā)后的運動時間x(秒)的函數(shù)關(guān)系式,并求出P與Q相遇時x的值.
精英家教網(wǎng)精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知在△ABC中,AB=AC=6,且△ABC的面積是12.
(1)①在圖1中,求BD的長.②在圖2中,P是BC的中點,求PM+PN.
(2)圖3中,對于BC邊上任意一點P,請對點P到兩腰距離和(PM+PN)與腰上高(CQ)的大小關(guān)系提出猜想,并加以證明.
(3)如圖4,在矩形ABCD中,P是CD邊任意一點,AD=3,CD=4,請直接寫出P到BD、AC的距離和PM+PN.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•溧水縣二模)如圖1,在矩形ABCD中,AB=8,AD=6,點P、Q分別是AB邊和CD邊上的動點,點P從點A向點B運動,點Q從點C向點D運動,且保持AP=CQ.設(shè)AP=x.
(1)當PQ∥AD時,x的值等于
4
4
;
(2)如圖2,線段PQ的垂直平分線EF與BC邊相交于點E,連接EP、EQ,設(shè)BE=y,求y關(guān)于x的函數(shù)關(guān)系式;
(3)在問題(2)中,設(shè)△EPQ的面積為S,求S關(guān)于x的函數(shù)關(guān)系式,并求當x取何值時,S的值最小,最小值是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

(2013•浙江一模)閱讀并解答下列問題:

問題一.如圖1,在?ABCD中,AD=20,AB=30,∠A=60°,點P是線段AD上的動點,連PB,當AP=
15
15
時,PB最小值為
15
3
15
3

問題二.如圖2,四邊形ABCD是邊長為20的菱形,且∠DAB=60°,P是線段AC上的動點,E在AB上,且AE=
1
4
AB
,連PE,PB,問當AP長為多少時,PE+PB的值最小,并求這個最小值.
問題三.如圖3,在矩形ABCD中,AB=20,CB=10,P,Q分別是線段AC,AB上的動點,問當AP長為多少時,PQ+PB的值最小,并求這個最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•婺城區(qū)一模)如圖1,在矩形ABCD中,AB=4,AD=2,點P是邊AB上的一個動點(不與點A、點B重合),點Q在邊AD上,將△CBP和△QAP分別沿PC、PQ折疊,使B點與E點重合,A點與F點重合,且P、E、F三點共線.

(1)若點E平分線段PF,則此時AQ的長為多少?
(2)若線段CE與線段QF所在的平行直線之間的距離為2,則此時AP的長為多少?
(3)在“線段CE”、“線段QF”、“點A”這三者中,是否存在兩個在同一條直線上的情況?若存在,求出此時AP的長;若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案