25、已知:兩個正整數(shù)的和與積相等,求這兩個正整數(shù).
解:不妨設(shè)這兩個正整數(shù)為a、b,且a≤b.
由題意,得ab=a+b,(*)
則ab=a+b≤b+b=2b,所以a≤2,
因為a為正整數(shù),所以a=1或2,
①當(dāng)a=1時,代入等式(*),得1•b=1+b,b不存在;
②當(dāng)a=2時,代入等式(*),得2•b=2+b,b=2.
所以這兩個正整數(shù)為2和2.
仔細(xì)閱讀以上材料,根據(jù)閱讀材料的啟示,思考是否存在三個正整數(shù),它們的和與積相等試說明你的理由.
分析:設(shè)出3個正整數(shù),得到等量關(guān)系abc=a+b+c,根據(jù)a≤b≤c,得到ab≤3,再判斷出a,b,c的整數(shù)值即可.
解答:解:假設(shè)存在三個正整數(shù),它們的和與積相等,
不妨設(shè)這三個正整數(shù)為a、b、c,且a≤b≤c,則abc=a+b+c(※)
所以abc=a+b+c≤c+c+c=3c,所以ab≤3,
若a≥2,則b≥a≥2,所以ab≥4,與ab≤3矛盾.
因此a=1,b=1或2或3,
①當(dāng)a=1,b=1時,代入等式(※)得1+1+c=1•1•c,c不存在.
⑦當(dāng)a=1,b=2時,代入等式(※)得1+2+c=1•2•c,c=3.
③當(dāng)a=1,b=3時,代入等式(※)得1+3+c=1•3•c,c=2,與b≤c矛盾,舍去.
所以a=1,b=2,c=3,因此假設(shè)成立,即存在三個正整數(shù),它們的和與積相等.
點(diǎn)評:本題考查用類比法求解.注意仿照所給范例的做法,分別設(shè)這三個正整數(shù)為a、b、c,且a≤b≤c,再根據(jù)題例進(jìn)行證明即可.此類題目比較簡單,考查了學(xué)生對所學(xué)知識的應(yīng)用能力.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

已知:兩個正整數(shù)的和與積相等,求這兩個正整數(shù).
解:設(shè)這兩個正整數(shù)為a、b,且a≤b.
由題意,得ab=a+b,…(*)
則ab=a+b≤b+b=2b,即ab≤2b,所以a≤2.
因為a為正整數(shù),所以a=1或2.
①當(dāng)a=1時,代入等式(*),得1•b=1+b,b不存在;
②當(dāng)a=2時,代入等式(*),得2•b=2+b,b=2.
所以這兩個正整數(shù)為2和2.
仿照以上閱讀材料的解法解答下列問題:
已知:三個正整數(shù)的和與積相等,求這三個正整數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

已知:兩個正整數(shù)的和與積相等,求這兩個正整數(shù).
解:設(shè)這兩個正整數(shù)為a、b,且a≤b.
由題意,得ab=a+b,…(*)
則ab=a+b≤b+b=2b,即ab≤2b,所以a≤2.
因為a為正整數(shù),所以a=1或2.
①當(dāng)a=1時,代入等式(*),得1•b=1+b,b不存在;
②當(dāng)a=2時,代入等式(*),得2•b=2+b,b=2.
所以這兩個正整數(shù)為2和2.
仿照以上閱讀材料的解法解答下列問題:
已知:三個正整數(shù)的和與積相等,求這三個正整數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知:兩個正整數(shù)的和與積相等,求這兩個正整數(shù).
設(shè)這兩個正整數(shù)為a、b,且a≤b.
由題意,得ab=a+b,…(*)
則ab=a+b≤b+b=2b,即ab≤2b,所以a≤2.
因為a為正整數(shù),所以a=1或2.
①當(dāng)a=1時,代入等式(*),得1-b=1+b,b不存在;
②當(dāng)a=2時,代入等式(*),得2-b=2+b,b=2.
所以這兩個正整數(shù)為2和2.
仿照以上閱讀材料的解法解答下列問題:
已知:三個正整數(shù)的和與積相等,求這三個正整數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2004年全國中考數(shù)學(xué)試題匯編《不等式與不等式組》(03)(解析版) 題型:解答題

(2004•淮安)已知:兩個正整數(shù)的和與積相等,求這兩個正整數(shù).
解:不妨設(shè)這兩個正整數(shù)為a、b,且a≤b.
由題意,得ab=a+b,(*)
則ab=a+b≤b+b=2b,所以a≤2,
因為a為正整數(shù),所以a=1或2,
①當(dāng)a=1時,代入等式(*),得1•b=1+b,b不存在;
②當(dāng)a=2時,代入等式(*),得2•b=2+b,b=2.
所以這兩個正整數(shù)為2和2.
仔細(xì)閱讀以上材料,根據(jù)閱讀材料的啟示,思考是否存在三個正整數(shù),它們的和與積相等試說明你的理由.

查看答案和解析>>

同步練習(xí)冊答案