如圖,在平面直角坐標(biāo)中,直角梯形OABC的邊OC、OA分別在x軸、y軸上,AB∥OC,∠AOC=900,∠BCO=450,BC=,點(diǎn)C的坐標(biāo)為(-18,0).

(1)求點(diǎn)B的坐標(biāo);
(2)若直線DE交梯形對(duì)角線BO于點(diǎn)D,交y軸于點(diǎn)E,且OE=4,OD=2BD,求直線DE的解析式.

解:(1)過點(diǎn)B作BF軸于F,

中,∠BCO=45°,BC=
∴CF=BF=12。
∵點(diǎn)C的坐標(biāo)為(-18,0),∴AB=OF=18-12=6。
∴點(diǎn)B的坐標(biāo)為。
(2)過點(diǎn)D作DG軸于點(diǎn)G,
∵AB∥DG,,∴。

∵AB=6,OA=12,∴DG=4,OG=8。

設(shè)直線DE的解析式為,將代入,得
,解得 。
∴直線DE解析式為。

解析試題分析:(1)如圖所示,構(gòu)造等腰直角三角形BCF,求出BF、CF的長(zhǎng)度,即可求出B點(diǎn)坐標(biāo)。
(2)已知E點(diǎn)坐標(biāo),欲求直線DE的解析式,需要求出D點(diǎn)的坐標(biāo).如圖所示,證明△ODG∽△OBA,由線段比例關(guān)系求出D點(diǎn)坐標(biāo),從而應(yīng)用待定系數(shù)法求出直線DE的解析式。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:解答題

點(diǎn)P(x,y)在第一象限,且x+y=10,點(diǎn)A的坐標(biāo)為(8,0),設(shè)原點(diǎn)為O,△OPA的面積為S.
(1)求S與x的函數(shù)關(guān)系式,寫出x的取值范圍,畫出這個(gè)函數(shù)圖象;
(2)當(dāng)S=12時(shí),求點(diǎn)P的坐標(biāo);
(3)△OPA的面積能大于40嗎?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

做服裝生意的王老板經(jīng)營(yíng)甲、乙兩個(gè)店鋪,每個(gè)店鋪在同一段時(shí)間內(nèi)都能售出A,B兩種款式的服裝合計(jì)30件,并且每售出一件A款式和B款式服裝,甲店鋪獲毛利潤(rùn)分別為30元和40元,乙店鋪獲毛利潤(rùn)分別為27元和36元。某日王老板進(jìn)貨A款式服裝35件,B款式服裝25件。怎樣分配給每個(gè)店鋪各30件服裝,使得在保證乙店鋪毛利潤(rùn)不小于950元的前提下,王老板獲取的總毛利潤(rùn)最大?最大的總毛利潤(rùn)是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

已知一次函數(shù)的圖象與反比例函數(shù)的圖象相交,其中一個(gè)交點(diǎn)的縱坐標(biāo)為6.
(1)求兩個(gè)函數(shù)的解析式;
(2)若已知另一點(diǎn)的橫坐標(biāo)為,結(jié)合圖象求出時(shí)x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

某工程機(jī)械廠根據(jù)市場(chǎng)需求,計(jì)劃生產(chǎn)A、B兩種型號(hào)的大型挖掘機(jī)共100臺(tái),該廠所籌生產(chǎn)資金不少于22 400萬元,但不超過22 500萬元,且所籌資金全部用于生產(chǎn)此兩型挖掘機(jī),所生產(chǎn)的此兩型挖掘機(jī)可全部售出,此兩型挖掘機(jī)的生產(chǎn)成本和售價(jià)如下表:

型號(hào)
A
B
成本(萬元/臺(tái))
200
240
售價(jià)(萬元/臺(tái))
250
300
(1)該廠對(duì)這兩型挖掘機(jī)有哪幾種生產(chǎn)方案?
(2)該廠如何生產(chǎn)能獲得最大利潤(rùn)?
(3)根據(jù)市場(chǎng)調(diào)查,每臺(tái)B型挖掘機(jī)的售價(jià)不會(huì)改變,每臺(tái)A型挖掘機(jī)的售價(jià)將會(huì)提高m萬元(m>0),該廠應(yīng)該如何生產(chǎn)獲得最大利潤(rùn)?(注:利潤(rùn)=售價(jià)﹣成本)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

青海新聞網(wǎng)訊:西寧市為加大向國(guó)家環(huán)境保護(hù)模范城市大步邁進(jìn)的步伐,積極推進(jìn)城市綠地、主題公園、休閑場(chǎng)地建設(shè).園林局利用甲種花卉和乙種花卉搭配成A、B兩種園藝造型擺放在夏都大道兩側(cè).搭配數(shù)量如下表所示:

 
甲種花卉(盆)
乙種花卉(盆)
A種園藝造型(個(gè))


B種園藝造型(個(gè))


(1)已知搭配一個(gè)A種園藝造型和一個(gè)B種園藝造型共需元.若園林局搭配A種園藝造型個(gè),B種園藝造型個(gè)共投入元.則A、B兩種園藝 造型的單價(jià)分別是多少元?
(2)如果搭配A、B兩種園藝造型共個(gè),某校學(xué)生課外小組承接了搭配方案的設(shè)計(jì),其中甲種花卉不超過盆,乙種花卉不超過盆,問符合題意的搭配方案有幾種?請(qǐng)你幫忙設(shè)計(jì)出來.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

蓮城超市以10元/件的價(jià)格調(diào)進(jìn)一批商品,根據(jù)前期銷售情況,每天銷售量y(件)與該商品定價(jià)x(元)是一次函數(shù)關(guān)系,如圖所示.

(1)求銷售量y與定價(jià)x之間的函數(shù)關(guān)系式;
(2)如果超市將該商品的銷售價(jià)定為13元/件,不考慮其它因素,求超市每天銷售這種商品所獲得的利潤(rùn).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

甲、乙兩地相距300千米,一輛貨車和一輛轎車先后從甲地出發(fā)向乙地,如圖,線段OA表示貨車離甲地距離y(千米)與時(shí)間x(小時(shí))之間的函數(shù)關(guān)系;折線BCD表示轎車離甲地距離y(千米)與x(小時(shí))之間的函數(shù)關(guān)系.請(qǐng)根據(jù)圖象解答下列問題:

(1)轎車到達(dá)乙地后,貨車距乙地多少千米?
(2)求線段CD對(duì)應(yīng)的函數(shù)解析式.
(3)轎車到達(dá)乙地后,馬上沿原路以CD段速度返回,求轎車從甲地出發(fā)后多長(zhǎng)時(shí)間再與貨車相遇(結(jié)果精確到0.01).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,已知雙曲線經(jīng)過點(diǎn)D(6,1),點(diǎn)C是雙曲線第三象限分支上的動(dòng)點(diǎn),過C作CA⊥x軸,過D作DB⊥y軸,垂足分別為A,B,連接AB,BC.

(1)求k的值;
(2)若△BCD的面積為12,求直線CD的解析式;
(3)判斷AB與CD的位置關(guān)系,并說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案