精英家教網 > 初中數學 > 題目詳情

附加題:如圖,在梯形ABCD中,AD∥BC,∠B=90°,AB=14cm,AD=18cm,BC=21cm,點P從點A出發(fā)沿AD邊向點D以1cm/s的速度移動,點Q從點C出發(fā)沿CB向點B以2cm/s的速度移動,若點P、Q分別從點A、C同時出發(fā),設移動時間為t s,則t為何值時,梯形PQCD是等腰梯形?

解:過P作PN⊥BC于N,過D作DM⊥BC于M,
∵AD∥BC,∠B=90°,DM⊥BC,
∴四邊形ABMD是矩形,AD=BM.
∴MC=BC-BM=BC-AD=3.
又∵QN=BN-BQ=AP-BQ=t-(21-2t)=3t-21.
若梯形PQCD為等腰梯形,則QN=MC=3.
得3t-21=3,t=8,
即t=8秒時,梯形PQCD是等腰梯形.
分析:過P作PN⊥BC于N,過D作DM⊥BC于M,先證明四邊形ABMD是矩形,從而得到AD=BM,再根據邊與邊之間的關系,列一元方程3t-21=3,得到t=8,即t=8秒時,梯形PQCD是等腰梯形.
點評:本題考查了矩形的性質,等腰梯形的判定和性質,同時也是初中幾何中的動點問題,是難點,也是中考的重點,需熟練掌握.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

附加題:如圖,在梯形ABCD中,AD∥BC,AB=DC=AD,∠C=60°,AE⊥BD于點E,F(xiàn)是CD的中點,DG是梯形ABCD的高.精英家教網
(1)求證:四邊形AEFD是平行四邊形;
(2)設AE=x,四邊形DEGF的面積為y,求y關于x的函數關系式.

查看答案和解析>>

科目:初中數學 來源: 題型:

精英家教網附加題:如圖,在梯形ABCD中,AD∥BC,對角線AC⊥BD,且AC=12,BD=9,求此梯形的中位線長.

查看答案和解析>>

科目:初中數學 來源: 題型:

附加題:如圖,在梯形ABCD中,AD∥BC,∠B=90°,AB=14cm,AD=18cm,BC=21cm,點P從點A出發(fā)沿AD邊向點D以1cm/s的速度移動,點Q從點C出發(fā)沿CB向點B以2cm/s的速度移動,若點P、Q分別從點A、C同時出發(fā),設移動時間為t s,則t為何值時,梯形PQCD是等腰梯形?

查看答案和解析>>

科目:初中數學 來源:2009年重慶市綦江縣趕水中學學模擬測試數學試卷(解析版) 題型:解答題

(2008•蕪湖)附加題:如圖,在梯形ABCD中,AD∥BC,AB=DC=AD,∠C=60°,AE⊥BD于點E,F(xiàn)是CD的中點,DG是梯形ABCD的高.
(1)求證:四邊形AEFD是平行四邊形;
(2)設AE=x,四邊形DEGF的面積為y,求y關于x的函數關系式.

查看答案和解析>>

同步練習冊答案