(2013•百色)如圖,在△ABC中,以AB為直徑的⊙O交AC于點(diǎn)D,直徑AB左側(cè)的半圓上有一點(diǎn)動點(diǎn)E(不與點(diǎn)A、B重合),連結(jié)EB、ED.
(1)如果∠CBD=∠E,求證:BC是⊙O的切線;
(2)當(dāng)點(diǎn)E運(yùn)動到什么位置時,△EDB≌△ABD,并給予證明;
(3)若tanE=
3
3
,BC=
4
3
3
,求陰影部分的面積.(計算結(jié)果精確到0.1)
(參考數(shù)值:π≈3.14,
2
≈1.41,
3
≈1.73)
分析:(1)欲證明BC是⊙O的切線,只需證得BC⊥AB;
(2)利用圓周角定理,全等三角形的判定定理AAS證得當(dāng)點(diǎn)E運(yùn)動到DE經(jīng)過點(diǎn)O位置時,△EDB≌△ABD;
(3)如圖,連接OD,過點(diǎn)O作OF⊥AD于點(diǎn)F.S陰影=S扇形OAD-S△AOD.由圓周角定理和正切三角函數(shù)定義易求AB的長度、圓心角∠AOD=120°.所以根據(jù)扇形面積公式和三角形的面積公式進(jìn)行計算即可.
解答:解:(1)證明:∵AB為⊙O的直徑,
∴∠ADB=90°,
即∠ABD+∠BAD=90°.
又∵∠CBD=∠E,∠BAD=∠E,
∴∠ABD+∠CBD=90°,即∠ABC=90°.
∴BC⊥AB.
∴BC是⊙O的切線.

(2)當(dāng)點(diǎn)E運(yùn)動到DE經(jīng)過點(diǎn)O位置時,△EDB≌△ABD.證明如下:
當(dāng)點(diǎn)E運(yùn)動到DE經(jīng)過點(diǎn)O位置時,∠EBD=∠ADB=90°,
在△EDB與△ABD中,
∠EBD=∠ADB
∠ABD=∠E
BD=DB

∴△EDB≌△ABD(AAS).

(3)如圖,連接OD,過點(diǎn)O作OF⊥AD于點(diǎn)F,
∵∠BAD=∠E,tanE=
3
3

∴tan∠BAD=
3
3

又∵∠ADB=90°,
∴∠BAD=30°.
∵∠ABC=90°,BC=
4
3
3
,
∴AB=
BC
tan∠DAB
=4.
∴AO=2,OF=1,AF=AOcos∠BAD=
3

∴AD=2
3

∵AO=DO,
∴∠AOD=120°.
∴S陰影=S扇形OAD-S△AOD=
120π×22
360
-
1
2
×3=2
3
×1=
4
3
π-
3
≈2.5.
點(diǎn)評:本題考查了切線的判定、全等三角形的判定以及扇形面積的計算.求(3)題中陰影部分的面積時,采用了“分割法”.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2013•百色)如圖,在⊙O中,直徑CD垂直于弦AB,若∠C=25°,則∠ABO的度數(shù)是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•百色)如圖,在邊長為10cm的正方形ABCD中,P為AB邊上任意一點(diǎn)(P不與A、B兩點(diǎn)重合),連結(jié)DP,過點(diǎn)P作PE⊥DP,垂足為P,交BC于點(diǎn)E,則BE的最大長度為
5
2
5
2
cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•百色)如圖,在等腰梯形ABCD中,DC∥AB,E是DC延長線上的點(diǎn),連接AE,交BC于點(diǎn)F.
(1)求證:△ABF∽△ECF;
(2)如果AD=5cm,AB=8cm,CF=2cm,求CE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•百色)如圖,在平面直角坐標(biāo)系xOy中,直線y=k1x+b交x軸于點(diǎn)A(-3,0),交y軸于點(diǎn)B(0,2),并與y=
k2x
的圖象在第一象限交于點(diǎn)C,CD⊥x軸,垂足為D,OB是△ACD的中位線.
(1)求一次函數(shù)與反比例函數(shù)的解析式;
(2)若點(diǎn)C′是點(diǎn)C關(guān)于y軸的對稱點(diǎn),請求出△ABC′的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•百色)如圖,在平面直角坐標(biāo)系xOy中,將拋物線C1:y=x2+3先向右平移1個單位,再向下平移7個單位得到拋物線C2.C2的圖象與x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)).
(1)求拋物線C2的解析式;
(2)若拋物線C2的對稱軸與x軸交于點(diǎn)C,與拋物線C2交于點(diǎn)D,與拋物線C1交于點(diǎn)E,連結(jié)AD、DB、BE、EA,請證明四邊形ADBE是菱形,并計算它的面積;
(3)若點(diǎn)F為對稱軸DE上任意一點(diǎn),在拋物線C2上是否存在這樣的點(diǎn)G,使以O(shè)、B、F、G四點(diǎn)為頂點(diǎn)的四邊形是平行四邊形?如果存在,請求出點(diǎn)G的坐標(biāo);如果不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案