如圖,四邊形ABCD是平行四邊形,以對(duì)角線BD為直徑作⊙O,分別與BC,AD相交于點(diǎn)E,F(xiàn).
(1)求證:四邊形BEDF為矩形;
(2)BD2=BE•BC,試判斷直線CD與⊙O的位置關(guān)系,并說明理由.
【答案】分析:(1)求出∠DEB=∠DFB=90°,根據(jù)平行四邊形的性質(zhì)推出AD∥BC,推出∠FBC=∠DFB=90°,∠EDA=∠BED=90°,根據(jù)矩形的判定推出即可;
(2)根據(jù)已知求出△BED∽△BDC,推出∠BDC=∠BED=90°,根據(jù)切線判定推出即可.
解答:(1)證明:∵BD為⊙O直徑,
∴∠DEB=∠DFB=90°,
∵四邊形ABCD是平行四邊形,
∴AD∥BC,
∴∠FBC=∠DFB=90°,∠EDA=∠BED=90°,
∴四邊形BEDF為矩形;
(2)解:直線CD與⊙O的位置關(guān)系式相切,
理由是:∵BD2=BE•BC,
=,
∵∠DBC=∠CBD,
∴△BED∽△BDC,
∴∠BDC=∠BED=90°,
即BD⊥CD,
∴CD與⊙O相切.
點(diǎn)評(píng):本題考查了平行四邊形的性質(zhì),矩形的判定,相似三角形的性質(zhì)和判定,切線的判定的應(yīng)用,主要考查學(xué)生的推理能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,四邊形ABCD的對(duì)角線AC與BD互相垂直平分于點(diǎn)O,設(shè)AC=2a,BD=2b,請(qǐng)推導(dǎo)這個(gè)四邊形的性質(zhì).(至少3條)
(提示:平面圖形的性質(zhì)通常從它的邊、內(nèi)角、對(duì)角線、周長(zhǎng)、面積等入手.)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,四邊形ABCD的對(duì)角線AC、BD交于點(diǎn)P,過點(diǎn)P作直線交AD于點(diǎn)E,交BC于點(diǎn)F.若PE=PF,且AP+AE=CP+CF.
(1)求證:PA=PC.
(2)若BD=12,AB=15,∠DBA=45°,求四邊形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,四邊形ABCD,AB=AD=2,BC=3,CD=1,∠A=90°,求∠ADC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,四邊形ABCD為正方形,E是BC的延長(zhǎng)線上的一點(diǎn),且AC=CE,求∠DAE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,四邊形ABCD是正方形,點(diǎn)E是BC的中點(diǎn),∠AEF=90°,EF交正方形外角的平分線CF于F.

(I)求證:AE=EF;
(Ⅱ)若將條件中的“點(diǎn)E是BC的中點(diǎn)”改為“E是BC上任意一點(diǎn)”,其余條件不變,則結(jié)論AE=EF還成立嗎?若成立,請(qǐng)證明;若不成立,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案